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Preface

The inspiration for this volume was a workshop held under the auspices of the
PASCAL Network of Excellence. Details of the event and more information about
the Network can be found under the heading ‘Workshop Organization.’ The aim
of this preface is to provide an overview of the contributions to this volume,
placing this research in its wider context.

The aim of the workshop was to bring together researchers working on sub-
space and latent variable techniques in different research communities in order
to create bridges and enable cross-fertilization of ideas. For this reason we delib-
erately sought invited refereed contributions that would survey a broader field of
research giving a common notation and entry point into the individual papers.

The five invited contributions are (in alphabetical order of first author) Avrim
Blum on Random Projection, Margins, Kernels and Feature Selection, Wray
Buntine and Aleks Jakulin on Discrete Principal Components Analysis, Dunja
Mladenić on Dimensionality Reduction by Feature Selection in Machine Learn-
ing, Roman Rosipal and Nicole Krämer on Overview and Recent Advances in
Partial Least Squares, and Mike Titterington on Some Aspects of Latent Struc-
ture Analysis.

Blum considers subspace selection by random projection. The theoretical
analysis of this approach provides an important bound on the generalization
of large margin algorithms, but it can also be implemented in kernel defined
feature spaces through a two-stage process. The paper provides a survey of a
number of clean and important theoretical results. Buntine and Jakulin con-
sider method of determining latent structure based on probabilistic genera-
tive models of the data. Their paper gives an introduction to these advanced
and effective methods presented from within the machine learning community.
Titterington’s contribution is a closely related paper but comes from the statis-
tics tradition providing a general framework within which discrete and continu-
ous combinations of latent and observed variables can be placed. Mladenić con-
siders the restricted class of axis parallel subspaces that correspond to feature
selection. There is a long tradition of this approach within machine learning and
the paper provides an overview of a range of techniques for selecting features,
discussing their weaknesses and carefully evaluating their performance. Rosipal
and Krämer give a detailed introduction to partial least squares, an important
method of subspace selection developed within the chemometrics research com-
munity. It can be thought of as an adaptation of principal components analysis
where the projection directions have been chosen to be well-suited for solving
a set of regression tasks. The authors discuss the kernelization of the technique
together with other more recent results.

The contributed papers cover a range of application areas and technical ap-
proaches. Agakov and Barber develop a probabilistic modelling technique with a
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novel twist of using encoding models rather than generative ones; Monay et al.
again consider computer vision using a probabilistic modelling approach; Navot
et al. analyze a simple two Gaussian example to show that feature selection can
make significant differences in performance and that techniques such as support
vector machines are not able to avoid the difficulties of non-informative features
in this case; Bouveyron et al. consider a computer vision application using a
probabilistic modelling approach; Gruber and Weiss continue the computer vi-
sion theme but introduce prior knowledge to enhance the ability to factorize
image data to perform 3D reconstruction; Savu-Krohn and Auer use a cluster-
ing approach to reduce feature dimensions for image data; Rogers and Gunn
consider random forests as an approach to feature selection; Maurer gives fre-
quentist style generalization bounds on PCA-like subspace methods; and finally
Reunanen discusses the biases of using cross-validation to do feature selection
and outlines some techniques to prevent the introduction of such a bias.

We commend the volume to you as a broad introduction to many of the
key approaches that have been developed for subspace identification and feature
selection. At the same time the contributed talks give insightful examples of
applications of the techniques and highlight recent developments in this rapidly
expanding research area. We hope that the volume will help bridge the gaps
between different disciplines and hence enable creative collaborations that will
bring benefit to all involved.

Marko Grobelnik
Steve Gunn

Craig Saunders
John Shawe-Taylor

February 2006



Workshop Organization

Many of the papers in this proceedings volume were presented at the PASCAL
Workshop entitled Subspace, Latent Structure and Feature Selection Techniques:
Statistical and Optimization Perspectives which took place in Bohinj, Slovenia
during February, 23–25 2005.

The workshop was part of a Thematic Programme Linking Learning and
Statistics with Optimization that ran over the first half of 2005. The PASCAL
Network is a European Network of Excellence funded by the European Union
under the IST programme. It currently has around 300 researchers at 55 insti-
tutions. Its center of gravity is machine learning, but it aims to build links with
both optimization and statistics as well as with a range of application areas.
It sponsors and co-sponsors a wide range of workshops either organized inde-
pendently or co-located with international conferences. More information can be
found on the website http://www.pascal-network.org.

The Bohinj workshop was hosted by the Institute Josef Stefan, which pro-
vided all of the local organization. We are indebted to them for all of the hard
work that they put into making the event such a success, although even they
could not have planned the magical winter scene that awaited us on our arrival.
Particular thanks are due to Tina Anžič, who handled the reservations and hotel
bookings as well as many of the travel arrangements.

This work was supported by the IST Programme of the European Commu-
nity, under the PASCAL Network of Excellence, IST-2002-506778.
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Discrete Component Analysis

Wray Buntine1 and Aleks Jakulin2
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Abstract. This article presents a unified theory for analysis of compo-
nents in discrete data, and compares the methods with techniques such as
independent component analysis, non-negative matrix factorisation and
latent Dirichlet allocation. The main families of algorithms discussed
are a variational approximation, Gibbs sampling, and Rao-Blackwellised
Gibbs sampling. Applications are presented for voting records from the
United States Senate for 2003, and for the Reuters-21578 newswire
collection.

1 Introduction

Principal component analysis (PCA) [MKB79] is a key method in the statistical
engineering toolbox. It is well over a century old, and is used in many different
ways. PCA is also known as the Karhünen-Loève transform or Hotelling trans-
form in image analysis, and a variation is latent semantic analysis (LSA) in text
analysis [DDL+90]. It is a kind of eigen-analysis since it manipulates the eigen-
spectrum of the data matrix. It is usually applied to measurements and real
valued data, and used for feature extraction or data summarization. LSA might
not perform the centering step (subtracting the mean from each data vector
prior to eigen-analysis) on the word counts for a document to preserve matrix
sparseness, or might convert the word counts to real-valued tf*idf [BYRN99].
The general approach here is data reduction.

Independent component analysis (ICA, see [HKO01]) is in some ways an
extension of this general approach, however it also involves the estimation of
so-called latent, unobservable variables. This kind of estimation follows the ma-
jor statistical methodology that deals with general unsupervised methods such
as clustering and factor analysis. The general approach is called latent structure
analysis [Tit], which is more recent, perhaps half a century old. The data is mod-
elled in a way that admits unobservable variables, that influence the observable
variables. Statistical inference is used to “reconstruct” the unobservable variables
from the data jointly with general characteristics of the unobservable variables
themselves. This is a theory with particular assumptions (i.e., a “model”), so
the method may arrive at poor results.

C. Saunders et al. (Eds.): SLSFS 2005, LNCS 3940, pp. 1–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 W. Buntine and A. Jakulin

Relatively recently the statistical computing and machine learning commu-
nity has become aware of seemingly similar approaches for discrete observed data
that appears under many names. The best known of these in this community are
probabilistic latent semantic indexing (PLSI) [Hof99], non-negative matrix fac-
torisation (NMF) [LS99] and latent Dirichlet allocation (LDA) [BNJ03]. Other
variations are discussed later in Section 5. We refer to these methods jointly as
Discrete Component Analysis (DCA), and this article provides a unifying model
for them.

All the above approaches assume that the data is formed from individual ob-
servations (documents, individuals, images), where each observation is described
through a number of variables (words, genes, pixels). All these approaches at-
tempt to summarize or explain the similarities between observations and the
correlations between variables by inferring latent variables for each observation,
and associating latent variables with observed variables.

These methods are applied in the social sciences, demographics and med-
ical informatics, genotype inference, text and image analysis, and information
retrieval. By far the largest body of applied work in this area (using citation in-
dexes) is in genotype inference due to the Structure program [PSD00]. A growing
body of work is in text classification and topic modelling (see [GS04, BPT04]),
and language modelling in information retrieval (see [AGvR03, BJ04, Can04]).
As a guide, argued in the next section, the methods apply when PCA or ICA
might be used, but the data is discrete.

Here we present in Section 3 a unified theory for analysis of components in
discrete data, and compare the methods with related techniques in Section 5.
The main families of algorithms discussed in Section 7 are a variational approx-
imation, Gibbs sampling, and Rao-Blackwellised Gibbs sampling. Applications
are presented in Section 8 for voting records from the United States Senate for
2003, and the use of components in subsequent classification.

2 Views of DCA

One interpretation of the DCA methods is that they are a way of approximating
large sparse discrete matrices. Suppose we have a 500, 000 documents made up
of 1, 500, 000 different words. A document such as a page out of Dr. Seuss’s The
Cat in The Hat, is first given as a sequence of words.

So, as fast as I could, I went after my net. And I said, “With my net I
can bet them I bet, I bet, with my net, I can get those Things yet!”

It can be put in the bag of words representation, where word order is lost. This
yields a list of words and their counts in brackets:

after(1) and(1) as(2) bet(3) can(2) could(1) fast(1) get(1) I(7) my(3)
net(3) said(1) so(1) them(1) things(1) those(1) went(1) with(2) yet(1) .

Although the word ‘you’ never appears in the original, we do not include ‘you
(0)’ in the representation since zeros are suppressed. This sparse vector can be
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represented as a vector in full word space with 1, 499, 981 zeroes and the counts
above making the non-zero entries in the appropriate places. Given a matrix
made up of rows of such vectors of non-negative integers dominated by zeros, it
is called here a large sparse discrete matrix.

Bag of words is a basic representation in information retrieval [BYRN99].
The alternative is a sequence of words. In DCA, either representation can be
used and the models act the same, up to any word order effects introduced by
incremental algorithms. This detail is made precise in subsequent sections.

In this section, we argue from various perspectives that large sparse discrete
data is not well suited to standard PCA or ICA methods.

2.1 Issues with PCA

PCA has been normally applied to numerical data, where individual instances are
vectors of real numbers. However, many practical datasets are based on vectors of
integers, non-negative counts or binary values. For example, a particular word
cannot have a negative number of appearances in a document. The vote of a
senator can only take three values: Yea, Nay or Not Voting. We can transform
all these variables into real numbers using tf*idf, but this is a linear weighting
that does not affect the shape of a distribution.

With respect to modelling count data in linguistic applications, Dunning
makes the following warning [Dun94]:

Statistics based on the assumption of normal distribution are invalid in
most cases of statistical text analysis unless either enormous corpora are
used, or the analysis is restricted to only the very most common words
(that is, the ones least likely to be of interest). This fact is typically ig-
nored in much of the work in this field. Using such invalid methods may
seriously overestimate the significance of relatively rare events. Paramet-
ric statistical analysis based on the binomial or multinomial distribution
extends the applicability of statistical methods to much smaller texts
than models using normal distributions and shows good promise in early
applications of the method.

While PCA is not always considered a method based on Gaussians, it can be
justified using Gaussian distributions [Row98, TB99]. Moreover, PCA is justified
using a least squares distance measure, and most of the properties of Gaussians
follow from the distance measure alone. Rare events correspond to points far
away under an L2 norm.

Fundamentally, there are two different kinds of large sample approximating
distributions that dominate discrete statistics: the Poisson and the Gaussian.
For instance, a large sample binomial is approximated as a Poisson1 when the
probability is small and as a Gaussian otherwise [Ros89]. Figure 2.1 illustrates
this by showing the Gaussian and Poisson approximations to a binomial with

1 This is a distribution on integers where a rate is given for events to occur, and the
distribution is over the total number of events counted.
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sample size N = 100 for different proportions (p = 0.03, 0.01, 0.03). Plots are
done with probability in log scale so the errors for low probability values are
highlighted. One can clearly see the problem here: the Gaussian provides a rea-
sonable approximate for medium values of the proportion p but for small values
it severely underestimates low probabilities. When these low probability events
occur, as they always will, the model becomes distorted.

Thus in image analysis based on analogue to digital converters, where data
is counts, Gaussian errors can sometimes be assumed, but the Poisson should
be used if counts are small. DCA then avoids Gaussian modelling of the data,
using a Poisson or multinomial directly.

Another critique of the general style of PCA comes from the psychology
literature, this time it is used as a justification for DCA [GS02]. Griffiths and
Steyvers argue against the least squares distance of PCA:

While the methods behind LSA were novel in scale and subject, the
suggestion that similarity relates to distance in psychological space has
a long history (Shepard, 1957). Critics have argued that human similarity
judgments do not satisfy the properties of Euclidean distances, such
as symmetry or the triangle inequality. Tversky and Hutchinson (1986)
pointed out that Euclidean geometry places strong constraints on the
number of points to which a particular point can be the nearest neighbor,
and that many sets of stimuli violate these constraints.

They also considered power law arguments which PCA violates for associated
words.

2.2 Component Analysis as Approximation

In the data reduction approach for PCA, one seeks to reduce each J-dimensional
data vector to a smaller K-dimensional vector. This can be done by approximat-
ing the full data matrix as a product of smaller matrices, one representing the
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Fig. 1. The matrix approximation view

reduced vectors called the component/factor score matrix, and one representing
a data independent part called the component/factor loading matrix, as shown in
Figure 1. In PCA according to least squares theory, this approximation is made
by eliminating the lower-order eigenvectors, the least contributing components
[MKB79].

If there are I documents, J words and K components, then the matrix on the
left has I ∗ J entries and the two matrices on the right have (I + J) ∗K entries.
This represents a simplification when K � I, J . We can view DCA methods as
seeking the same goal in the case where the matrices are sparse and discrete.

When applying PCA to large sparse discrete matrices, or LSA using word
count data interpretation of the components, if it is desired, becomes difficult
(it was not a goal of the original method [DDL+90]). Negative values appear in
the component matrices, so they cannot be interpreted as “typical documents”
in any usual sense. This applies to many other kinds of sparse discrete data:
low intensity images (such as astronomical images) and verb-noun data used in
language models introduced by [PTL93], for instance.

The cost function being minimized then plays an important role. DCA places
constraints on the approximating score matrix and loading matrix in Figure 1
so that they are also non-negative. It also uses an entropy distance instead of a
least squares distance.

2.3 Independent Components

Independent component analysis (ICA) was also developed as an alternative to
PCA. Hyvänen and Oja [HO00] argue that PCA methods merely find uncorre-
lated components. ICA then was developed as a way of representing multivariate
data with truly independent components. In theory, PCA approximates this also
if the data is Gaussian [TB99], but in practice it rarely is.

The basic formulation is that a K-dimensional data vector w is a linear
invertible function of K independent components represented as a K-dimensional
latent vector l, w = Θl for a square invertible matrix Θ. Note the ICA assumes
J = K in our notation. Θ plays the same role as the loading matrix above. For
some univariate density model U, the independent components are distributed as
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p(l |U) =
∏

k p(lk |U), thus one can get a likelihood formula p(w |Θ, U) using
the above equality2.

The Fast ICA algorithm [HO00] can be interpreted as a maximum likelihood
approach based on this model and likelihood formula. In the sparse discrete
case, however, this formulation breaks down for the simple reason that w is
mostly zeros: the equation can only hold if l and Θ are discrete as well and thus
the gradient-based algorithms for ICA cannot be justified. To get around this in
practice, when applying ICA to documents [BKG03], word counts are sometimes
first turned into tf*idf scores [BYRN99].

To arrive at a formulation more suited to discrete data, we can relax the
equality in ICA (i.e., w = Θl) to be an expectation:

Ew∼p(w|l,U) [w] = Θl .

We still have independent components, but a more robust relationship between
the data and the score vector. Correspondence between ICA and DCA has been
noted in [BJ04, Can04]. With this expectation relationship, the dimension of
l can now be less than the dimension of w, K < J , and thus Θ would be a
rectangular matrix.

3 The Basic Model

A good introduction to these models from a number of viewpoints is by [BNJ03,
Can04, BJ04]. Here we present a general model. The notation of words, bags
and documents will be used throughout, even though other kinds of data repre-
sentations also apply. In statistical terminology, a word is an observed variable,
and a document is a data vector (a list of observed variables) representing an
instance. In machine learning terminology, a word is a feature, a bag is a data
vector, and a document is an instance. Notice that the bag collects the words in
the document and loses their ordering. The bag is represented as a data vector
w. It is now J-dimensional. The latent, hidden or unobserved vector l called the
component scores is K-dimensional. The term component is used here instead
of topic, factor or cluster. The parameter matrix is the previously mentioned
component loading matrix Θ, and is J ×K.

At this point, it is also convenient to introduce the symbology used through-
out the paper. The symbols summarised in Table 1 will be introduced as we
go.

3.1 Bags or Sequences of Words?

For a document x represented as a sequence of words, if w = bag(x) is its
bagged form, the bag of words, represented as a vector of counts. In the simplest
2 By a change of coordinates

p(w | Θ, U) =
1

det(Θ)
k

p Θ−1w
k

| U
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Table 1. Summary of major symbols

I number of documents
(i) subscript to indicate document, sometimes dropped
J number of different words, size of the dictionary
K number of components
L(i) number of words in document i
S number of words in the collection,

i
L(i)

w(i) vector of J word counts in document i, row totals of V , entries wj,(i)

c(i) vector of K component counts for document i, column totals of V
V matrix of word counts per component, dimension J × K, entries vj,k

l(i) vector of K component scores for document i, entries lk,(i)

m(i) l(i) normalised, entries mk,(i)

k(i) vector of L(i) sequential component assignments for the words in
document i, entries kl,(i) ∈ [1, . . . , K]

Θ component loading matrix, dimension J × K, entries θj,k

θ·,k component loading vector for component k, a column of Θ
α, β K-dimensional parameter vectors for component priors

case, one can use a multinomial with sample size L = |x| and vocabulary size
J = |w| to model the bag, or alternatively L independent discrete distributions3

with J outcomes to model each xl. The bag w corresponds to the sequence x

with the order lost, thus there are ( j wj)!
j wj !

different sequences that map to the
same bag w. The likelihoods for these two simple models thus differ by just this
combinatoric term.

Note that some likelihood based methods such as maximum likelihood, some
Bayesian methods, and some other fitting methods (for instance, a cross valida-
tion technique) use the likelihood as a black-box function. They take values or
derivatives but otherwise do not further interact with the likelihood. The combi-
natoric term mapping bag to sequence representations can be ignored here safely
because it does not affect the fitting of the parameters for M. Thus for these
methods, it is irrelevant whether the data is treated as a bag or as a sequence.
This is a general property of multinomial data.

Thus, while we consider bag of words in this article, most of the theory
applies equally to the sequence of words representation4. Implementation can
easily address both cases with little change to the algorithms, just to the data
handling routines.

3 The discrete distribution is the multivariate form of a Bernoulli where an index
j ∈ {0, 1, ..., J − 1} is sampled according to a J-dimensional probability vector.

4 Some advanced fitting methods such as Gibbs sampling do not treat the likelihood
as a black-box. They introduce latent variables that expands the functional form
of the likelihood, and they may update parts of a document in turn. For these,
ordering effects can be incurred by bagging a document, since updates for different
parts of the data will now be done in a different order. But the combinatoric term
mapping bag to sequence representations will still be ignored and the algorithms are
effectively the same up to the ordering affects.
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3.2 General DCA

The general formulation introduced in Section 2.3 is an unsupervised version of
a linear model, and it applies to the bag of words w as

Ew∼p(w|l,Θ) [w] = Θl (1)

The expected value (or mean) of the data is given by the dot product of the
component loading matrix Θ and some latent component scores l.

In full probability (or Bayesian) modelling [GCSR95], we are required to
give a distribution for all the non-deterministic values in a model, including
model parameters and the latent variables. In likelihood modelling [CB90], we
are required to give a distribution for all the data values in a model, including
observed and latent variables. These are the core methodologies in computational
statistics, and most others extend these two. The distribution for the data is
called a likelihood in both methodologies.

The likelihood of a document is the primary way of evaluating a probabilistic
model. Although likelihood is not strictly a probability in classical statistics, we
can interpret them as a probability that a probabilistic model M would gener-
ate a document x, P (x|M). On the other hand, it is also a way of determining
whether the document is usual or unusual: documents with low likelihood are
often considered to be outliers or anomalies. If we trust our documents, low like-
lihoods indicate problems with the model. If we trust out model, a low likelihood
indicates problems with a document.

Thus to complete the above formulation for DCA, we need to give distribu-
tions matching the constraint in Equation (1), to specify the likelihood. Distri-
butions are needed for:

– how the sequence x or bag w is distributed given its mean Θl formed from
the component loading matrix,

– how the component scores l are distributed,
– and if full probability modelling is used, how the component loading matrix

Θ is distributed apriori, as well as any parameters.

The formulation of Equation (1) is also called an admixture model in the
statistical literature [PSD00]. This is in contrast with a mixture model [GCSR95]
which uses a related constraint

Ew∼p(w|l) [w] = θ·,k ,

for some latent variable k representing the single latent component for w. Since k
is unobserved, this also corresponds to making a weighted sum of the probability
distributions for each θ·,k.

4 The Model Families

This section introduces some forms of DCA using specific distributions for the
sequence x or bag w and the component scores l. The fundamental model here is
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the Gamma-Poisson Model (GP model for short). Other models can be presented
as variations. The probability for a document is given for each model, both for the
case where the latent variables are known (and thus are on the right-hand side),
and for the case where the latent variables are included in the left-hand side.

4.1 The Gamma-Poisson Model

The general Gamma-Poisson form of DCA, introduced as GaP [Can04] is now
considered in more detail:

– Document data is supplied in the form of word counts. The word count for
each word type is wj . Let L be the total count, so L =

∑
j wj .

– The document also has component scores l that indicate the amount of the
component in the document. These are latent or unobserved. The entries lk
are independent and gamma distributed

lk ∼ Gamma(αk, βk) for k = 1, . . . , K.

The βk affects scaling of the components5, while αk changes the shape of
the distribution, shown in Figure 2.

0
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0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

Probability

rate = lk

alpha=0.2
alpha=0.8
alpha=1.0
alpha=1.2
alpha=2.0
alpha=4.0

Fig. 2. Gamma distribution for different values of αk

– There is a component loading matrix Θ of size J ×K with entries θj,k that
controls the partition of features amongst each component. In the matrix,
each column for component k is normalised across the features, meaning that∑

j θj,k = 1. Thus each column represents the proportions of words/features
in component k.

– The observed data w is now Poisson distributed, for each j

wj ∼ Poisson ((Θl)j) .

5 Conventions for the gamma vary. Sometimes a parameter 1/βk is used. Our conven-
tion is revealed in Equation (2).
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– The K parameters (αk, βk) to the gamma distributions give K-dimensional
parameter vectors α and β. Initially these vectors will be treated as con-
stants, and their estimation is the subject of later work.

– When using Bayesian of full probability modelling, a prior is needed for Θ.
A Dirichlet prior can be used for each k-th component of Θ with J prior
parameters γj , so θ·,k ∼ DirichletJ(γ). In practice we use a Jeffreys’ prior,
which has γj = 0.5. The use of a Dirichlet has no strong justification other
than being conjugate [GCSR95], but the Jeffreys’ prior has some minimax
properties [CB94] that make it more robust.

The hidden or latent variables here are the component scores l. The model para-
meters are the gamma parameters β and α, and the component loading matrix
Θ. Denote the model as GP standing for Gamma-Poisson. The full likelihood
for each document, p(w, l |β, α, Θ, K, GP), is composed of two parts. The first
part comes from K independent gamma distributions for lk, and the second part
comes from J independent Poisson distributions with parameters

∑
k lkθj,k.

likelihood of l likelihood of w given l︷ ︸︸ ︷∏
k

βαk

k lαk−1
k exp{−βklk}

Γ (αk)

︷ ︸︸ ︷∏
j

(
∑

k lkθj,k)wj exp {− (
∑

k lkθj,k)}
wj !

(2)

4.2 The Conditional Gamma-Poisson Model

In practice, when fitting the parameters α in the GP or DM model, it is often
the case that the αk go very small. Thus, in this situation, perhaps 90% of the
component scores lk are negligible, say less than 10−8 once normalised. Rather
than maintaining these negligible values, we can allow component scores to be
zero with some finite probability. The Conditional Gamma-Poisson Model, de-
noted CGP for short, introduces this capability. In retrospect, CGP is a sparse
GP with an additional parameter per component to encourage sparsity.

The CGP model extends the Gamma-Poisson model by making the lk zero
sometimes. In the general case, the lk are independent and zero with probability
ρk and otherwise gamma distributed with probability 1− ρk.

lk ∼ Gamma(αk, βk) for k = 1, . . . , K.

Denote the model as CGP standing for Conditional Gamma-Poisson, and the
full likelihood is now p(w, l |β, α, ρ, Θ, K, CGP). The full likelihood for each
document, modifying the above Equation (2), replaces the term inside

∏
k

with

(1− ρk)
βαk

k lαk−1
k exp{−βklk}

Γ (αk)
+ ρk1lk=0 (3)
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4.3 The Dirichlet-Multinomial Model

The Dirichlet-multinomial form of DCA was introduced as MPCA. In this case,
the normalised latent variables m are used, and the total word count L is not
modelled.

m ∼ DirichletK(α) , w ∼ Multinomial(L, Θm)

The first argument to the multinomial is the total count, the second argument
is the vector of probabilities. Denote the model as DM, and the full likelihood is
now p(w, m |L, α, Θ, K, DM). The full likelihood for each document becomes:

CL
w1,...,wJ

Γ

(∑
k

αk

)∏
k

mαk−1
k

Γ (αk)

∏
j

(∑
k

mkθj,k

)wj

(4)

where CL
w is L choose w1, . . . , wJ . This model can also be derived from the

Gamma-Poisson model, shown in the next section.

4.4 A Multivariate Version

Another variation of the methods is to allow grouping of the count data. Words
can be grouped into separate variable sets. These groups might be “title words,”
“body words,” and “topics” in web page analysis or “nouns,” “verbs” and “ad-
jectives” in text analysis. The groups can be treated with separate discrete dis-
tributions, as below. The J possible word types in a document are partitioned
into G groups B1, . . . , BG. The total word counts for each group g is denoted
Lg =

∑
j∈Bg

wj . If the vector w is split up into G vectors wg = {wj : j ∈ Bg},
and the matrix Θ is now normalised by group in each row, so

∑
j∈Bg

θj,k = 1,
then a multivariate version of DCA is created so that for each group g,

wg ∼ Multinomial

(
Lg,

{∑
k

mkθj,k : j ∈ Bg

})
.

Fitting and modelling methods for this variation are related to LDA or MPCA,
and will not be considered in more detail here. This has the advantage that dif-
ferent kinds of words have their own multinomial and the distribution of different
kinds is ignored. This version is demonstrated subsequently on US Senate voting
records, where each multinomial is now a single vote for a particular senator.

5 Related Work

These sections begins by relating the main approaches to each other, then placing
them in the context of exponential family models, and finally a brief history is
recounted.



12 W. Buntine and A. Jakulin

5.1 Correspondences

Various published cases of DCA can be represented in terms of this format, as
given in Table 2. A multinomial with total count L and J possible outcomes is
the bagged version of L discrete distributions with J possible outcomes. In the
table, NA indicates that this aspect of the model was not required to be specified
because the methodology made no use of it. Note that NMF used a cost function

Table 2. Previously Published Models

Name Bagged Components p(x/w | Θ, l) p(l/m)
NMF [LS99] yes l Poisson NA
PLSI [Hof99] no m discrete NA
LDA [BNJ03] no m discrete Dirichlet

MPCA [Bun02] yes m multinomial Dirichlet
GaP [Can04] yes l Poisson gamma

formulation, and thus avoided defining likelihood models. It is shown later that
its cost function corresponds to a Gamma-Poisson with parameters α = β = 0
(i.e., all zero).

LDA has the multinomial of MPCA replaced by a sequence of discrete distri-
butions, and thus the choose term drops, as per Section 3.1. PLSI is related to
LDA but lacks a prior distribution on m. It does not model these latent variables
using full probability theory, but instead using a weighted likelihood method
[Hof99]. Thus PLSI is a non-Bayesian version of LDA, although its weighted
likelihood method means it accounts for over-fitting in a principled manner.

LDA and MPCA also have a close relationship to GaP (called GP here).
If the parameter α is treated as known and not estimated from the data, and
the β parameter vector has the same value for each βk, then L is aposteriori
independent of m and Θ. In this context LDA, MPCA and GaP are equivalent
models ignoring representational issues.

Lemma 1. Given a Gamma-Poisson model of Section 4.1 where the β para-
meter is a constant vector with all entries the same, β, the model is equivalent
to a Dirichlet-multinomial model of Section 4.3 where mk = lk/

∑
k lk, and in

addition

L ∼ Poisson-Gamma

(∑
k

αk, β, 1

)

Proof. Consider the Gamma-Poisson model. The sum L =
∑

j wj of Poisson
variables w has the distribution of a Poisson with parameter given by the sum
of their means. When the sum of Poisson variables is known, the set of Poisson
variables has a multinomial distribution conditioned on the sum (the total count)
[Ros89]. The Poisson distributions on w then is equivalent to:

L ∼ Poisson

(∑
k

lk

)
, w ∼ Multinomial

(
L,

1∑
k lk

Θl

)
.
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Moreover, if the β parameter is constant, then mk = lk/
∑

k lk is distributed as
DirichletK(α), and

∑
k lk is distributed independently as a Gamma(

∑
k αk, β).

The second distribution above can then be represented as

w ∼ Multinomial (L, Θm) .

Note also, that marginalising out
∑

k lk convolves a Poisson and a gamma
distribution to produce a Poisson-Gamma distribution for L [BS94].

If α is estimated from the data in GaP, then the presence of the observed L will
influence α, and thus the other estimates such as of Θ. In this case, LDA and
MPCA will no longer be effectively equivalent to GaP. Note, Canny recommends
fixing α and estimating β from the data [Can04].

To complete the set of correspondences, note that in Section 7.1 it is proven
that NMF corresponds to a maximum likelihood version of GaP, and thus it also
corresponds to a maximum likelihood version of LDA, MPCA, and PLSI.

5.2 Notes on the Exponential Family

For the general DCA model of Section 3.2, when p(w |Θl) is in the so-called
exponential family distributions [GCSR95], the expected value of w is referred
to as the dual parameter, and it is usually the parameter we know best. For the
Bernoulli with probability p, the dual parameter is p, for the Poisson with rate λ,
the dual parameter is λ, and for the Gaussian with mean μ, the dual parameter
is the mean. Our formulation, then, can be also be interpreted as letting w be
exponential family with dual parameter given by (Θl). Our formulation then
generalises PCA in the same way that a linear model [MN89] generalises linear
regression.

Note, an alternative has also been presented [CDS01] where w has an ex-
ponential family distribution with natural parameters given by (Θl). For the
Bernoulli with probability p, the natural parameter is log(p/(1−p)), for the Pois-
son with rate λ, the natural parameter is log λ and for the Gaussian with mean
μ, the natural parameter is the mean. This formulation generalises PCA in the
same way that a generalised linear model [MN89] generalises linear regression.

5.3 Historical Notes

Several independent groups within the statistical computing and machine learn-
ing community have contributed to the development of the DCA family of meth-
ods. Some original research includes the following: grade of membership (GOM)
[WM82], probabilistic latent semantic indexing (PLSI) [Hof99], non-negative ma-
trix factorisation (NMF) [LS99], genotype inference using admixtures [PSD00],
latent Dirichlet allocation (LDA) [BNJ03], and Gamma-Poisson models (GaP)
[Can04]. Modifications and algorithms have also been explored as multinomial
PCA (MPCA) [Bun02] and multiple aspect modelling [ML02].

The first clear enunciation of the large-scale model in its Poisson form comes
from [LS99], and in its multinomial form from [Hof99] and [PSD00]. The first



14 W. Buntine and A. Jakulin

clear expression of the problem as a latent variable problem is given by [PSD00].
The relationship between LDA and PLSI and that NMF was a Poisson version of
LDA was first pointed out by [Bun02], and proven in [GG05]. The connections to
ICA come from [BJ04] and [Can04]. The general Gamma-Poisson formulation,
perhaps the final generalisation to this line of work, is in [Can04].

Related techniques in the statistical community can be traced back to Latent
Class Analysis developed in the 1950’s, and a rich theory has since developed
relating the methods to correspondence analysis and other statistical techniques
[vGv99].

6 Component Assignments for Words

In standard mixture models, each document in a collection is assigned to one
latent component. The DCA family of models can be interpreted as making
each word in each document be assigned to one latent component. To see this,
we introduce another latent vector which represents the component assignments
for different words. As in Section 3.1, this can be done using a bag of components
or a sequence of components representation, and no effective change occurs in
the basic models, or in the algorithms so derived. What this does is expand out
the term Θl into parts, treating it as if it is the result of marginalising out some
latent variable.

We introduce a K-dimensional discrete latent vector c whose total count is
L, the same as the word count. The count ck gives the number of words in the
document appearing in the k-th component. Its posterior mean makes a good
diagnostic and interpretable result. A document from the sports news might
have 50 “football” words, 10 “German” words, 20 “sports fan” words and 20
“general vocabulary” words.

This latent vector is derived from a larger latent matrix, V of size J×K and
entries vj,k. This has row totals wj as given in the observed data and column
totals ck. Vectors w and c are these word appearance counts and component
appearance counts, respectively, based on summing rows and columns of matrix
V . This is shown in Figure 3.

K components

J
w

or
ds

v1,1 v1,2 · · · v1,K

v2,1 v2,2 · · · v2,K

...
...

. . .
...

vJ,1 vJ,2 · · · vJ,K

w1

w2

...

wJ

c1 c2 · · · cK

Fig. 3. A representation of a document as a contingency table
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The introduction of the latent matrix V changes the forms of the likelihoods,
and makes the development and analysis of algorithms easier. This section cat-
alogues the likelihood formula, to be used when discussing algorithms.

6.1 The Gamma-Poisson Model

With the new latent matrix V , the distributions underlying the Gamma-Poisson
model become:

lk ∼ Gamma(αk, βk) (5)
ck ∼ Poisson (lk)

wj =
∑

k

vj,k where vj,k ∼ Multinomial (ck, θ·,k) .

The joint likelihood for a document, p(V , l |β, α, Θ, K, GP) (the w are now
derived quantities so not represented), thus becomes, after some rearrangement

∏
k

βαk

k lck+αk−1
k exp{−(βk + 1)lk}

Γ (αk)

∏
j,k

θ
vj,k

j,k

vj,k!
. (6)

Note that l can be marginalised out, yielding

∏
k

Γ (ck + αk)
Γ (αk)

βαk

k

(βk + 1)ck+αk

∏
j,k

θ
vj,k

j,k

vj,k!
(7)

and the posterior mean of lk given c is (ck + αk)/(1 + βk). Thus each ck ∼
Poisson-Gamma(αk, βk, 1).

6.2 The Conditional Gamma-Poisson Model

The likelihood follows the GP case, except that with probability ρk, lk = 0 and
thus ck = 0. The joint likelihood, p(V , l |β, α, ρ, Θ, K, CGP), thus becomes,
after some rearrangement

∏
k

⎛
⎝(1 − ρk)

⎛
⎝βαk

k lck+αk−1
k exp{−(βk + 1)lk}

Γ (αk)

∏
j

θ
vj,k

j,k

vj,k!

⎞
⎠ (8)

+ ρk

⎛
⎝1lk=01ck=0

∏
j

1vj,k=0

⎞
⎠
⎞
⎠ .

Note that l can be marginalised out, yielding

∏
k

(
(1 − ρk)

Γ (ck + αk)
Γ (αk)

βαk

k

(βk + 1)ck+αk
+ ρk1ck=0

)∏
j

θ
vj,k

j,k

vj,k!
(9)

The θj,k can be pulled out under the constraint
∑

j vj,k = ck. The posterior
mean of lk given c is (1− ρk)(ck + αk)/(1 + βk).
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6.3 The Dirichlet-Multinomial Model

For the Dirichlet-multinomial model, a similar reconstruction applies:

m ∼ DirichletK(α) (10)
ck ∼ Multinomial (L, m)

wj =
∑

k

vj,k where vj,k ∼ Multinomial (ck, θ·,k) .

The joint likelihood, p(V , m |α, Θ, K, DM), thus becomes, after some rearrange-
ment

L! Γ

(∑
k

αk

)∏
k

mck+αk−1
k

Γ (αk)

∏
j,k

θ
vj,k

j,k

vj,k!
. (11)

Again, m can be marginalised out yielding

L!
Γ (

∑
k αk)

Γ (L +
∑

k αk)

∏
k

Γ (ck + αk)
Γ (αk)

∏
j,k

θ
vj,k

j,k

vj,k!
. (12)

7 Algorithms

In developing an algorithm, the standard approach is to match an optimiza-
tion algorithm to the functional form of the likelihood. When using Bayesian or
some other statistical methodology, this basic approach is usually a first step, or
perhaps an inner loop for some more sophisticated computational statistics.

The likelihoods do not yield easily to standard EM analysis. To see this,
consider the forms of the likelihood for a single document for the GP model,
and consider the probability for a latent variable z given the observed data
w, p(z |w, β, α, Θ, K, GP). For EM analysis, one needs to be able to compute
Ez∼p(z|w,Θ,...) [log p(w, z |Θ, . . .)]. There are three different forms of the likeli-
hood seen so far depending on which latent variables z are kept on the left-hand
side of the probability:

p(w, l |β, α, Θ, K,GP): from Equation (2) has the term (
∑

k lkθj,k)wj , which
means there is no known simple posterior distribution for l given w.

p(w, l, V |β, α, Θ, K,GP): from Equation (6) has the term lck+αk−1
k which

links the two latent variables l and V , and prevents a simple evaluation of
El,V [vj,k] as required for the expected log probability.

p(w, V |β, α, Θ, K,GP): from Equation (7) has the term Γ (ck + αk) (where
ck =

∑
j vj , k), which means there is no known simple posterior distribution

for V given w.

Now one could always produce an EM-like algorithm by separately updating l
and V in turn according to some mean formula, but the guarantee of convergence
of Θ to a maximum posterior or likelihood value will not apply. In this spirit
earlier authors point out that EM-like principles apply and use EM terminology
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since EM methods would apply if l was observed6. For the exponential family,
which this problem is in, the variational approximation algorithm with Kullback-
Leibler divergence corresponds to an extension of the EM algorithm [GB00,
Bun02]. This variational approach is covered below.

Algorithms for this problem follow some general approaches in the statisti-
cal computing community. Three basic approaches are presented here: a varia-
tional approximation, Gibbs sampling, and Rao-Blackwellised Gibbs sampling.
A maximum likelihood algorithm is not presented because it can be viewed as a
simplification of the algorithms here.

7.1 Variational Approximation with Kullback-Leibler Divergence

This approximate method was first applied to the sequential variant of the
Dirichlet-multinomial version of the problem by [BNJ03]. A fuller treatment of
these variational methods for the exponential family is given in [GB00, Bun02].

In this approach a factored posterior approximation is made for the latent
variables:

p(l, V |w, β, α, Θ, K, GP) ≈ q(l, V ) = ql(l)qV (V )

and this approximation is used to find expectations as part of an optimization
step. The EM algorithm results if an equality holds. The functional form of the
approximation can be derived by inspection of the recursive functional forms
(see [Bun02] Equation (4)):

ql(l) ∝ exp
(
EV ∼qV (V ) [log p (l, V , w |Θ, α, β, K)]

)
(13)

qV (V ) ∝ exp
(
El∼ql(l) [log p (l,v, w |Θ, α, β, K)]

)
.

An important computation used during convergence in this approach is a
lower bound on the individual document log probabilities. This naturally falls
out during computation (see [Bun02] Equation (6)). Using the approximation
q(l, V ) defined by the above proportions, the bound is given by

log p (w |Θ, α, β, K)
≥ El,V ∼q(l,V ) [log p (l, V , w |Θ, α, β, K)] + I(ql(l)) + I(qV (V )) .

The variational approximation applies to the Gamma-Poisson version and the
Dirichlet-multinomial version.

For the Gamma-Poisson Model: Looking at the recursive functionals of
Equation (13) and the likelihood of Equation (6), it follows that ql() must be K
independent Gammas one for each component, and qV () must be J independent
multinomials, one for each word. The most general case for the approximation
q() is thus

6 The likelihood p(w, V | l, β, α, Θ, K, GP) can be treated with EM methods using
the latent variable V and leaving l as if it was observed.
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lk ∼ Gamma(ak, bk)
{vj,k : k = 1, . . . , K} ∼ Multinomial(wj , {nj,k : k = 1, . . . , K}) ,

which uses approximation parameters (ak, bk) for each Gamma and and n·,k
(normalised as

∑
k nj,k = 1) for each multinomial. These parameters form two

vectors a, b and a matrix N respectively. The approximate posterior takes the
form ql(l |a, b)qV (V |N).

Using these approximating distributions, and again looking at the recursive
functionals of Equation (13), one can extract the rewrite rules for the parameters:

nj,k =
1
Zj

θj,k exp (E [log lk]) , (14)

ak = αk +
∑

j

wjnj,k,

bk = 1 + βk,

where E [log lk] ≡ Elk∼p(lk | ak.bk) [log lk] = Ψ0(ak)− log bk,

Zj ≡
∑

k

θj,k exp (E [log lk]) .

Here, Ψ0() is the digamma function, defined as d ln Γ (x)
dx and available in most

scientific libraries. These equations form the first step of each major cycle, and
are performed on each document.

The second step is to re-estimate the model parameters Θ using the posterior
approximation by maximising the expectation of the log of the full posterior
probability

El,V ∼ql(l)qV (V ) [log p (l, V , w, Θ |α, β, K)] .

This incorporates Equation (6) for each document, and a prior for each k-th
column of Θ of DirichletJ (γ) (the last model item in Section 4.1). Denote the
intermediate variables nj,k for the i-th document by adding a (i) subscript, as
nj,k,(i), and likewise for wj,(i). All these log probability formulas yield linear
terms in θj,k, thus with the normalising constraints for Θ one gets

θj,k ∝
∑

i

wj,(i)nj,k,(i) + γj . (15)

The lower bound on the log probability of Equation (14), after some simplifica-
tion and use of the rewrites of Equation (14), becomes

log
1∏

j wj !
−
∑

k

log
Γ (αk)bak

k

Γ (ak)βαk

k

+
∑

k

(αk − ak)E [log lk] +
∑

j

wj log Zj . (16)

The variational approximation algorithm for the Gamma-Poisson version is sum-
marised in Figure 4. An equivalent algorithm is produced if words are presented
sequentially instead of being bagged.
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1. Initialise a for each document. The uniform initialisation would be ak =

k
αk + L /K. Note N is not stored.

2. Do for each document:
(a) Using Equations (14), recompute N and update a in place.
(b) Concurrently, compute the log-probability bound of Equation (16), and add

to a running total.
(c) Concurrently, maintain the sufficient statistics for Θ, the total

i
wj,(i)nj,k,(i) for each j, k over documents.

(d) Store a for the next cycle and discard N .
3. Update Θ using Equation (15), normalising appropriately.
4. Report the total log-probability bound, and repeat, starting at Step 2.

Fig. 4. K-L Variational Algorithm for Gamma-Poisson

Complexity: Because Step 2(a) only uses words appearing in a document, the
full Step 2 is O(SK) in time complexity where S is the number of words in the
full collection. Step 3 is O(JK) in time complexity. Space complexity is O(IK)
to store the intermediate parameters a for each document, and the O(2JK) to
store Θ and its statistics. In implementation, Step 2 for each document is often
quite slow, and thus both a and the document word data can be stored on disk
and streamed, thus the main memory complexity is O(2JK) since the O(S)
and O(IK) terms are on disk. If documents are very small (e.g., S/I � K, for
instance “documents” are sentences or phrases), then this does not apply.

Correspondence with NMF: A precursor to the GaP model is non-negative ma-
trix factorisation (NMF) [LS99], which is based on the matrix approximation
paradigm using Kullback-Leibler divergence. The algorithm itself, converted to
the notation used here, is as follows

lk,(i) ←− lk,(i)

∑
j

θj,k∑
j θj,k

wj,(i)∑
k θj,klk,(i)

θj,k ←− θj,k

∑
i

lk,(i)∑
i lk,(i)

wj,(i)∑
k θj,klk,(i)

Notice that the solution is indeterminate up to a factor ψk. Multiply lk,(i) by ψk

and divide θj,k by ψk and the solution still holds. Thus, without loss of generality,
let θj,k be normalised on j, so that

∑
j θj,k = 1.

Lemma 2. The NMF equations above, where Θ is returned normalised, occur at
a maxima w.r.t. Θ and l for the Gamma-Poisson likelihood

∏
i p(w(i) |Θ, l(i), α

= 0, β = 0, K,GP).

Proof. To see this, the following will be proven. Take a solution to the NMF
equations, and divide θj,k by a factor ψk =

∑
j θj,k, and multiply lk,(i) by the

same factor. This is equivalent to a solution for the following rewrite rules

lk,(i) ←− lk,(i)

∑
j

θj,k

wj,(i)∑
k θj,klk,(i)

θj,k ∝ θj,k

∑
i

lk,(i)
wj,(i)∑

k θj,klk,(i)

where θj,k is kept normalised on j. These equations hold at a maxima to the
likelihood

∏
i p(w(i) |Θ, l(i), α = 0, β = 0, K, GP). The left equation corresponds
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to a maxima w.r.t. l(i) (note the Hessian for this is easily shown to be negative
indefinite), and the right is the EM equations for the likelihood. w.r.t. Θ.

To show equivalence of the above and the NMF equations, first prove the
forward direction. Take the scaled solution to NMF. The NMF equation for lk,(i)
is equivalent to the equation for lk,(i) in the lemma. Take the NMF equation for
θj,k and separately normalise both sides. The

∑
i lk,(i) term drops out and one is

left with the equation for θj,k in the lemma. Now prove the backward direction.
It is sufficient to show that the NMF equations hold for the solution to the
rewrite rules in the lemma, since θj,k is already normalised. The NMF equation
for lk,(i) clearly holds. Assuming the rewrite rules in the lemma hold, then

θj,k =
θj,k

∑
i

(
lk,(i)wj,(i)

/∑
k θj,klk,(i)

)∑
j θj,k

∑
i

(
lk,(i)wj,(i)

/∑
k θj,klk,(i)

)
=

θj,k

∑
i

(
lk,(i)wj,(i)

/∑
k θj,klk,(i)

)∑
i lk,(i)

∑
j

(
θj,kwj,(i)

/∑
k θj,klk,(i)

) (reorder sum)

=
θj,k

∑
i

(
lk,(i)wj,(i)

/∑
k θj,klk,(i)

)∑
i lk,(i)

(apply first rewrite rule)

Thus the second equation for NMF holds.

Note, including a latent variable such as l in the likelihood (and not dealing with
it using EM methods) does not achieve a correct maximum likelihood solution
for the expression

∏
i p(w(i) |Θ, α = 0, β = 0, K, GP). In practice, this is a

common approximate method for handling latent variable problems, and can
lead more readily to over-fitting.

For the Dirichlet-Multinomial Model: The variational approximation takes
a related form. The approximate posterior is given by:

m ∼ Dirichlet(a)
{vj,k : k = 1, . . . , K} ∼ multinomial(wj , {nj,k : k = 1, . . . , K})

This yields the same style update equations as Equations (14) except that βk = 1

nj,k =
1
Zj

θj,k exp (E [log mk]) , (17)

ak = αk +
∑

j

wjnj,k ,

where E [log mk] ≡ Emk∼p(mk |a) [log mk] = Ψ0(ak)− Ψ0

(∑
k

ak

)
,

Zj ≡
∑

k

θj,k exp (E [log mk]) .
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Equation (15) is also the same. The lower bound on the individual document log
probabilities, log p (w |Θ, α, K, DM) now takes the form

log
(
CL

w

)
− log

Γ (
∑

k ak)
∏

k Γ (αk)
Γ (

∑
k αk)

∏
k Γ (ak)

+
∑

k

(αk − ak)E [log mk] +
∑

j

wj log Zj .

(18)
The correspondence with Equation (16) is readily seen.

The algorithm for Dirichlet-multinomial version is related to that in Figure 4.
Equations (17) replace Equations (14), Equation (18) replaces Equation (16),
and the initialisation for ak should be 0.5, a Jeffreys prior.

7.2 Direct Gibbs Sampling

There are two styles of Gibbs sampling that apply to DCA. The first is a basic
Gibbs sampling first proposed by Pritchard, Stephens and Donnelly [PSD00].
Gibbs sampling is a conceptually simple method. Each unobserved variable in
the problem is resampled in turn according to its conditional distribution. We
compute its posterior distribution conditioned on all other variables, and then
sample a new value for the variable using the posterior. For instance, an ordering
we might use in this problem is: l(1), V (1), l(2), V (2), . . . , l(I), V (I), Θ. All the
low level sampling in this section use well known distributions such as gamma
or multinomial, and are available in standard scientific libraries.

To develop this approach for the Gamma-Poisson, look at the full posterior,
which is a product of individual document likelihoods with the prior for Θ from
the last model item in Section 4.1. The constant terms have been dropped.

∏
i

⎛
⎝∏

k

βαk

k l
ck,(i)+αk−1
k,(i) exp{−(βk + 1)lk,(i)}

Γ (αk)

∏
j,k

θ
vj,k,(i)

j,k

vj,k,(i)!

⎞
⎠∏

j,k

θ
γj

j,k (19)

Each of the conditional distributions used in the Gibbs sampling are propor-
tional to this. The first conditional distribution is p(l(i) |V (i), β, α, Θ, K, GP).
From this, isolating the terms just in l(i), we see that each lk,(i) is conditionally
gamma distributed. Likewise, each v·,k,(i) is multinomial distributed given l(i)
and Θ, and each θ·,k is Dirichlet distributed given all the l(i) and V (i) for each
i. The other models are similar. An additional effort is required to arrange the
parameters and sequencing for efficient use of memory.

The major differentiator for Gibbs sampling is the resampling of the latent
component vector l. The sampling schemes used for each version are given in
Table 3. Some care is required with the conditional Gamma-Poisson. When ck =
0, the sampling for lk needs to decide whether to use the zero case or the non-
zero case. This uses Equation (9) to make the decision, and then resorts to
Equation (8) if it is non-zero.

The direct Gibbs algorithm for the general case is given in Figure 5. This
Gibbs scheme turns out to correspond to the variational approximation, except-
ing that sampling is done instead of maximisation or expectation.
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Table 3. Sampling components for direct Gibbs on a single document

Model Sampling
GP lk ∼ Gamma(ck + αk, 1 + βk).

CGP

If ck = 0, then Conditional Gamma-Poisson with rate
pk(1+βk)αk

(1−pk)β
αk
k

+pk(1+βk)αk
and Gamma(αk, 1+βk). If ck �= 0, revert

to the above Gamma-Poisson case.

DM m ∼ Dirichlet({ck + αk : k}).

1. For each document i, retrieve the last c(i) from store, then
(a) Sample the latent component variables l(i) (or its normalised counterpart

m(i)) as per Table 3.
(b) For each word j in the document with positive count wj,(i), the component

counts vector, from Equation (5) and Equation (10),

{vj,k,(i) : k = 1, . . . , K} ∼ Multinomial wj,(i),
lk,(i)θj,k

k
lk,(i)θj,k

: k .

Alternatively, if the sequence-of-components version is to be used, the compo-
nent for each word can be sampled in turn using the corresponding Bernoulli
distribution.

(c) Concurrently, accumulate the log-probability p w(i) | l(i), α, β,Θ, K, GP ,
p w(i) | l(i), α, β, ρ, Θ, K, CGP , or p w(i) | m(i), L(i), α, β, Θ, K, DM .

(d) Concurrently, maintain the sufficient statistics for Θ, the total i vj,k,(i) for
each j, k over documents.

(e) Store c(i) for the next cycle and discard V (i).
2. Using a Dirichlet prior for rows of Θ, and having accumulated all the counts V (i)

for each document in sufficient statistics for Θ, then its posterior has rows that
are Dirichlet. Sample.

3. Report the total log-probability, and report.

Fig. 5. One Major Cycle of Gibbs Algorithm for DCA

The log probability of the words w can also accumulated in step 1(c). While
they are in terms of the latent variables, they still represent a reasonably unbi-
ased estimate of the likelihoods such as p

(
w(1), . . . ,w(I) |α, β, Θ, K, GP

)
.

7.3 Rao-Blackwellised Gibbs Sampling

Rao-Blackwellisation of Gibbs sampling [CR96] combines closed form updates of
variables with Gibbs sampling. It does so by a process called marginalisation or
variable elimination. When feasible, it can lead to significant improvements, the
general case for DCA. Griffiths and Steyvers [GS04] introduced this algorithm
for LDA, and it easily extends to the Gamma-Poisson model and its conditional
variant with little change to the sampling routines.
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When using this approach, the first step is to consider the full posterior prob-
ability and see which variables can be marginalised out without introducing com-
putational complexity in the sampling. For the GP model, look at the posterior
given in Equation (19). Equations (7) shows that the l(i)’s can be marginalised
out. Likewise, Θ can be marginalised out because it is an instance of a Dirich-
let. This yields a Gamma-Poisson posterior p

(
V (1), . . . ,V (I) |α, β, K, GP

)
, with

constants dropped:

∏
i

⎛
⎝∏

k

Γ (ck,(i) + αk)
(1 + βk)ck,(i)+αk

∏
j,k

1
vj,k,(i)!

⎞
⎠∏

k

∏
j Γ

(
γj +

∑
i vj,k,(i)

)
Γ
(∑

j γj +
∑

i ck,(i)

) (20)

Below it is shown that a short sampling routine can be based on this.
A similar formula applies in the conditional GP case using Equation (9) for

the marginalisation of l(i)’s. The first term with
∏

k in Equation (20) becomes

(1− ρk)
Γ (ck,(i) + αk)

Γ (αk)
βαk

k

(1 + βk)ck,(i)+αk
+ ρk1ck,(i)=0 .

Likewise a similar formula applies in the Dirichlet-multinomial version using
Equation (12):

∏
i

⎛
⎝∏

k

Γ (ck,(i) + αk)
∏
jk

1
vj,k,(i)!

⎞
⎠∏

k

∏
j Γ

(
γj +

∑
i vj,k,(i)

)
Γ
(∑

j γj +
∑

i ck,(i)

) (21)

Here a term of the form Γ
(∑

k(ck,(i) + αk)
)

drops out because
∑

k ck,(i) = L(i)
is known and thus constant.

Now the posterior distributions have been marginalised for each of the three
models, GP, CGP and DM, a Gibbs sampling scheme needs to be developed.
Each set {vj,k,(i) : k ∈ 1, . . . , K} sums to wj,(i), moreover the forms of the
functions in Equations (20) and (21) are quite nasty. A way out of this mess is
to convert the scheme from a bag of words model, implicit in the use of V (i) and
w(i), to a sequence of words model.

This proceeds as follows. Run along the L(i) words in a document and up-
date the corresponding component assignment for each word. Component as-
signments for the i-th document are in a L(i)-dimensional vector k(i), where
each entry takes a value from 1, . . . , K. Suppose the l-th word has word index
jl. In one step, change the counts {vjl,k,(i) : k ∈ 1, . . . , K} by one (one is in-
creased and one is decreased) keeping the total wjl,(i) constant. For instance, if a
word is originally in component k1 but updating by Gibbs sampling to k2, then
decrease vjl,k1,(i) by one and increase vjl,k2,(i) by one. Do this for L(i) words in
the document, for each document. Thus at word l for the i-th document, we
sample component assignment kl,(i) according to the posterior for kl,(i) with all
other assignments fixed. This posterior is proportional to (the denominator is a
convenient constant)

p (V | sequential, α, β, K, GP)|vjl,k,(i)←vjl,k,(i)+1k �=kl

p (V | sequential, α, β, K, GP)|vjl,kl,(i)←vjl,kl,(i)−1
,
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where the notation “sequential” is added to the right-hand side because the
combinatoric terms vj,k,(i)! of Equation (20) need to be dropped. This formula
simplifies dramatically because Γ (x + 1)/Γ (x) = x.

Derived sampling schemes are given in Table 3. The (i) subscript is dropped
and assumed for all counts, and j = jl is the word index for the word whose
component index is being resampled. Since kl is being sampled, a K dimensional
probability vector is needed. The table gives the unnormalised form.

Table 4. Sampling kl = k given j = jl for Rao-Blackwellised Gibbs

Model Sampling Proportionality

GP γj +
i
vj,k

j γj + i ck

ck + αk

1 + βk

CGP

When ck > 0 use the proportionality of the GP case, and oth-
erwise

γj +
i
vj,k

j
γj +

i
ck

αk

1 + βk

(1 − ρk)βαk
k

(1 − ρk)βαk
k + ρk(1 + βk)αk

DM γj +
i
vj,k

j
γj +

i
ck

(ck + αk).

1. Maintain the sufficient statistics for Θ, given by
i
vj,k,(i) for each j and k, and

the sufficient statistics for the component proportions l(i)/m(i) given by c(i).
2. For each document i, retrieve the L(i) component assignments for each word

then:
(a) Recompute statistics for l(i)/m(i) given by ck,(i) =

j
vj,k,(i) for each k from

the individual component assignment for each word.
(b) For each word l with word index jl and component assignment kl in the

document, resample the component assignment for this word according to
the marginalised likelihoods in this section.

i. First decrement vjl,kl,(i) and ckl,(i) by one to remove the component
assignment for the word.

ii. Sample kl = k proportionally as in Table 4.
iii. Increment vjl,kl,(i) and ckl,(i).

(c) Concurrently, record the log-probability such as
p w(i) | V (i), α, β, Θ, K, GP for the appropriate model.

(d) Concurrently, update the sufficient statistics for l(i)/m(i) and Θ.

Fig. 6. One Major Cycle of Rao-Blackwellised Gibbs Algorithm for DCA

This Rao-Blackwellised Gibbs algorithm is given in Figure 6. As before, an
approximately unbiased log probability can be recorded in Step 2(c). This re-
quires a value for Θ. While the sufficient statistics could be used to supply the
current mean estimate for Θ, this is not a true sampled quantity. An alternative
method is to make a sample of Θ in each major cycle and use this.
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Implementation Notes: Due to Rao-Blackwellisation, both the l(i)’s and Θ
are effectively re-estimated with each sampling step, instead of once after the
full pass over documents. This is most effective during early stages, and explains
the superiority of the method observed in practice. Moreover, it means only one
storage slot for Θ is needed (to store the sufficient statistics), whereas in direct
Gibbs two slots are needed (current value plus the sufficient statistics). This
represents a major saving in memory. Finally, the l(i)’s and Θ can be sampled
at any stage of this process (because their sufficient statistics make up the totals
appearing in the formula), thus Gibbs estimates for them can be made as well
during the MCMC process.

7.4 Historical Notes

Some previous algorithms can now be placed into context.

NMF: Straight maximum likelihood, e.g. in [LS99], expressed in terms of
Kullback-Leibler divergence minimization, where optimisation jointly applies
to the latent variables (see Section 7.1).

PLSI: Annealed maximum likelihood [Hof99], best viewed in terms of its clus-
tering precursor such as by [HB97],

Various Gibbs: Gibbs sampling on V (i), l(i)/m(i) and Θ in turn using a full
probability distribution by [PSD00], or Gibbs sampling on V (i) alone (or
equivalently, component assignments for words in the sequence of words
representation) after marginalising out l(i)/m(i) and Θ by [GS04],

LDA: variational approximation with Kullback-Leibler divergence by [BNJ03],
a significant introduction because of its speed.

Expectation propagation [ML02] requires O(KS) latent variables stored, a pro-
hibitive expense compared to the O(S) or O(KI) of other algorithms. Thus it
has not been covered here.

7.5 Other Aspects for Estimation and Use

A number of other algorithms are needed to put these models into regular use.

Component parameters: The treatment so far has assumed the parameter vec-
tors α and β are given. It is more usual to estimate these parameters with the
rest of the estimation tasks as done by [BNJ03, Can04]. This is feasible because
the parameters are shared across all the data, unlike the component vectors
themselves.

Estimating the number of components K: The number of components K is usu-
ally a constant assumed a priori. But it may be helpful to treat as a fittable
parameter or a random variable that adapts to the data. In popular terms, this
could be used to find the “right” number of components, though in practice and
theory such a thing might not exist. To obtain best-fitting K, we can employ
cross-validation, or we assess the evidence (or marginal likelihood) for the model
given a particular choice of K [CC95, BJ04]. In particular, evidence is the pos-
terior probability of the data given the choice of K after all other parameters
have been integrated out.
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Use on new data: A typical use of the model requires performing inference related
to a particular document. Suppose, for instance, one wished to estimate how well
a snippet of text, a query, matches a document. Our document’s components are
summarised by the latent variables m (or l). If the new query is represented by
q, then p(q|m, Θ, K, GP) is the matching quantity one would like ideally. Since
m is unknown, we must average over it. Various methods have been proposed
[ML02, BJ04].

Alternative components: Hierarchical components have been suggested [BJ04] as
a way of organising an otherwise large flat component space. For instance, the
Wikipedia with over half a million documents can easily support the discovery of
several hundred components. Dirichlet processes have been developed as an al-
ternative to the K-dimensional component priors in the Dirichlet-multinomial/
discrete model [YYT05], although in implementation the effect is to use
K-dimensional Dirichlets for a large K and delete low performing components.

8 Applications

This section briefly discusses two applications of the methods.

8.1 Voting Data

One type of political science data are the roll calls. There were 459 roll calls in
the US Senate in the year 2003. For each of those, the vote of every senator was
recorded in three ways: ‘Yea’, ‘Nay’ and ‘Not Voting’. The outcome of the roll call
can be positive (e.g., Bill Passed, Nomination Confirmed) corresponding to ‘Yea’,
or negative (e.g., Resolution Rejected, Veto Sustained). Hence, the outcome of
the vote can be interpreted as the 101st senator, by associating positive outcomes
with ‘Yea’ and negative outcomes with ‘Nay’.

Application of the Method: We can now map the roll call data to the DCA
framework. For each senator X we form two ‘words’, where wX,y implies that
X voted ‘Yea’, and wX,n implies that X voted ‘Nay’. Each roll call can be in-
terpreted as a document containing a single occurrence of some of the available
words. The pair of words wX,y , wX,n is then treated as a binomial, so the mul-
tivariate formulation of Section 4.4 is used. Priors for Θ were Jeffreys priors, α
was (0.1,0.1,...,0.1), and regular Gibbs sampling was used.

Special-purpose models are normally used for interpreting roll call data in po-
litical science, and they often postulate a model of rational decision making. Each
senator is modelled as a position or an ideal point in a continuous spatial model
of preferences [CJR04]. For example, the first dimension often delineates the
liberal-conservative preference, and the second region or social issues preference.
The proximities between ideal points ‘explain’ the positive correlations between
the senators’ votes. The ideal points for each senator can be obtained either by
optimization, for instance, with the optimal classification algorithm [Poo00], or
through Bayesian modelling [CJR04].
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Unlike the spatial models, the DCA interprets the correlations between votes
through membership of the senators in similar blocs. Blocs correspond to latent
component variables. Of course, we can speak only of the probability that a par-
ticular senator is a member of a particular bloc. The corresponding probability
vector is normalized and thus assures that a senator is always a member of one
bloc on the average. The outcome of the vote is also a member of several blocs,
and we can interpret the membership as a measure of how influential a particular
bloc is.

Our latent senator (bloc) can be seen as casting votes in each roll call. We
model the behavior of such latent blocs across the roll calls, and record it: it has
a behavior of its own. In turn, we also model the membership of each senator to
a particular bloc, which is assumed to be constant across all the blocs.

A related family of approaches is based on modelling relations or networks
using blocks or groups. There, a roll call would be described by one network,
individual senators would be nodes in that network, and a pair of nodes is
connected if the two senators agreed. Discrete latent variables try to explain the
existence of links between entities in terms of senators’ membership to blocks,
e.g., [HLL83, SN97].

Several authors prefer the block-model approach to modelling roll call data
[WMM05]. The membership of senators to the same block along with a high
probability for within-block agreements will explain the agreements between
senators. While a bloc can be seen as having an opinion about each issue, a
block does not (at least not explicitly). The authors also extended this model to
‘topics’, where the membership of senator to a particular block depends on the
topic of the issue; namely, the agreement between senators depends on what is
being discussed. The topic is also associated with the words that appear in the
description of an issue.

Visualization: We can analyze two aspects of the DCA model as applied to the
roll call data: we can examine the membership of senators in blocs, and we can
examine the actions of blocs for individual issues. The approach to visualization
is very similar, as we are visualizing a set of probability vectors. We can use the
gray scale to mirror the probabilities ranging from 0 (white) to 1 (black).

As yet, we have not mentioned the choice of K - the number of blocs. Al-
though the number of blocs can be a nuisance variable, such a model is distinctly
more difficult to show than one for a fixed K. We obtain the following negative
logarithms to the base 2 of the model’s likelihood for K = 4, 5, 6, 7, 10: 9448.6406,
9245.8770, 9283.1475, 9277.0723, 9346.6973. We see that K = 5 is overwhelm-
ingly selected over all others, with K = 4 being far worse. This means that with
our model, we best describe the roll call votes with the existence of five blocs.
Fewer blocs do not capture the nuances as well, while more blocs would not yield
reliable probability estimates given such an amount of data. Still, those models
are also valid to some extent. It is just that for a single visualization we pick the
best individual one of them.

We will now illustrate the membership of senators in blocs. Each senator is
represented with a vertical bar of 5 squares that indicate his or her membership
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Fig. 7. Component membership for Democrats
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Fig. 8. Component membership for Republicans

in blocs. We have arranged the senators from left to right using the binary PCA
approach of [deL03]. This ordering attempts to sort senators from the most
extreme to the most moderate and to the most extreme again. Figure 7 shows
the Democrat senators and Figure 8 the Republicans.

We can observe that component 5 is the Democrat majority. It is the strongest
overall component, yet quite uninfluential about the outcome. Component 4
are the moderate Democrats, and they seem distinctly more influential than
the Democrats of the majority. Component 3 is a small group of Republican
moderates. Component 2 is the Republican majority, the most influential bloc.
Component 1 is the Republican minority, not very influential. Component 1
tends to be slightly more extreme than component 2 on the average, but the two
components clearly cannot be unambiguously sorted.

9 Classification Experiments

DCA is not trying to capture those aspects of the text that are relevant for distin-
guishing one class of documents from another one. Assume our classification task
is to distinguish newspaper articles on politics from all others. For DCA, mod-
elling the distribution of a word such as ‘the’ is equally or more important than
modelling the distribution of a highly pertinent word such as ‘tsunami’ in clas-
sifying news reports. Of course, this is only a single example of sub-optimality.
Nevertheless, if there are several methods of reducing the dimensionality of text
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that all disregard the classification problem at hand, we can still compare them
with respect to classification performance.

We used MPCA and tested its use in its role as a feature construction tool, a
common use for PCA and ICA, and as a classification tool. For this, we used the
20 newsgroups collection described previously as well as the Reuters-21578 col-
lection7. We employed the SVMlight V5.0 [Joa99] classifier with default settings.
For classification, we added the class as a distinct multinomial (cf. Section 4.4)
for the training data and left it empty for the test data, and then predicted
the class value. Note that for performance and accuracy, SVM [Joa98] is a clear
winner [LYRL04]. It is interesting to see how MPCA compares.

Each component can be seen as generating a number of words in each
document. This number of component-generated words plays the same role in
classification as does the number of lexemes in the document in ordinary classifi-
cation. In both cases, we employed the tf*idf transformed word and component-
generated word counts as feature values. Since SVM works with sparse data
matrices, we assumed that a component is not present in a document if the
number of words that a component would have generated is less than 0.01.
The components alone do not yield a classification performance that would be
competitive with SVM, as the label has no distinguished role in the fitting. How-
ever, we may add these component-words in the default bag of words, hoping
that the conjunctions of words inherent to each component will help improve the
classification performance.

For the Reuters collection, we used the ModApte split. For each of the 6 most
frequent categories, we performed binary classification. Further results are dis-
closed in Table 28. No major change was observed by adding 50 components to
the original set of words. By performing classification on components alone, the
results were inferior, even with a large number of components. In fact, with 300
components, the results were worse than with 200 components, probably because
of over-fitting. Therefore, regardless of the number of components, the SVM per-
formance with words cannot be reproduced by component-generated words in
this collection. Classifying newsgroup articles into 20 categories proved more suc-
cessful. We employed two replications of 5-fold cross validation, and we achieved
the classification accuracy of 90.7% with 50 additional MPCA components, and
87.1% with SVM alone. Comparing the two confusion matrices, the most frequent
mistakes caused by SVM+MPCA beyond those of SVM alone were predict-
ing talk.politics.misc as sci.crypt (26 errors) and talk.religion.misc predicted as
sci.electron (25 errors). On the other hand, the components helped better identify
alt.atheism and talk.politics.misc, which were misclassified as talk.religion.misc
(259 fewer errors) earlier. Also, talk.politics.misc and talk.religion.misc were
not misclassified as talk.politics.gun (98 fewer errors). These 50 components
were not very successful alone, resulting in 18.5% classification accuracy. By in-
creasing the number of components to 100 and 300, the classification accuracy

7 The Reuters-21578, Distribution 1.0 test collection is available from David D. Lewis’
professional home page, currently: http://www.research.att.com/∼lewis

8 The numbers are percentages, and ‘P/R’ indicates precision/recall.
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Table 5. SVM Classification Results

SVM SVM+MPCA
CAT ACC. P/R ACC. P/R
earn 98.58 98.5/97.1 98.45 98.2/97.1
acq 95.54 97.2/81.9 95.60 97.2/82.2
moneyfx 96.79 79.2/55.3 96.73 77.5/55.9
grain 98.94 94.5/81.2 98.70 95.7/74.5
crude 97.91 89.0/72.5 97.82 88.7/70.9
trade 98.24 79.2/68.1 98.36 81.0/69.8

MPCA (50 comp.) MPCA (200 comp.)
CAT ACC. P/R ACC. P/R
earn 96.94 96.1/94.6 97.06 96.3/94.8
acq 92.63 93.6/71.1 92.33 95.3/68.2
moneyfx 95.48 67.0/33.0 96.61 76.0/54.7
grain 96.21 67.1/31.5 97.18 77.5/53.0
crude 96.57 81.1/52.4 96.79 86.1/52.4
trade 97.82 81.4/49.1 97.91 78.3/56.0

gradually increases to 25.0% and 34.3%. Therefore, many components are needed
for general-purpose classification.

From these experiments, we can conclude that components may help with
tightly coupled categories that require conjunctions of words (20 newsgroups),
but not with the keyword-identifiable categories (Reuters). Judging from the
ideas in [JB03], the components help in two cases: a) when the co-appearance
of two words is more informative than the sum of informativeness of individual
appearances of either word, and b) when the appearance of one word implies the
appearance of another word, which does not always appear in the document.

10 Conclusion

In this article, we have presented a unifying framework for various approaches
to discrete component analysis, presenting them as a model closely related to
ICA but suited for sparse discrete data. We have shown the relationships be-
tween existing approaches here such as NMF, PLSI, LDA, MPCA and GaP. For
instance, NMF with normalised results corresponds to an approximate maxi-
mum likelihood method for LDA, and GaP is the most general family of mod-
els. We have also presented the different algorithms available for three different
cases, Gamma-Poisson, conditional Gamma-Poisson (allowing sparse component
scores), and Dirichlet-multinomial. This extends a number of algorithms previous
developed for MPCA and LDA to the general Gamma-Poisson model. Experi-
ments with the Mpca software9 show that a typical 3GHz desktop machine can
build models in a few days with K in the hundreds for 3 gigabytes of text.
9 http://www.componentanalysis.org
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These models share many similarities with both PCA and ICA, and are thus
useful in a range of feature engineering tasks in machine learning and pattern
recognition. A rich literature is alsoemerging extending the model in a variety
of directions. This is as much caused by the surprising performance of the al-
gorithms, as it is by the availability of general Gibbs sampling algorithms that
allow sophisticated modelling.
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1 Introduction

Partial Least Squares (PLS) is a wide class of methods for modeling relations
between sets of observed variables by means of latent variables. It comprises
of regression and classification tasks as well as dimension reduction techniques
and modeling tools. The underlying assumption of all PLS methods is that the
observed data is generated by a system or process which is driven by a small
number of latent (not directly observed or measured) variables. Projections of
the observed data to its latent structure by means of PLS was developed by
Herman Wold and coworkers [48, 49, 52].

PLS has received a great amount of attention in the field of chemomet-
rics. The algorithm has become a standard tool for processing a wide spectrum
of chemical data problems. The success of PLS in chemometrics resulted in a
lot of applications in other scientific areas including bioinformatics, food re-
search, medicine, pharmacology, social sciences, physiology–to name but a few
[28, 25, 53, 29, 18, 22].

This chapter introduces the main concepts of PLS and provides an overview
of its application to different data analysis problems. Our aim is to present a
concise introduction, that is, a valuable guide for anyone who is concerned with
data analysis.

In its general form PLS creates orthogonal score vectors (also called latent
vectors or components) by maximising the covariance between different sets of
variables. PLS dealing with two blocks of variables is considered in this chapter,
although the PLS extensions to model relations among a higher number of sets
exist [44, 46, 47, 48, 39]. PLS is similar to Canonical Correlation Analysis (CCA)
where latent vectors with maximal correlation are extracted [24]. There are dif-
ferent PLS techniques to extract latent vectors, and each of them gives rise to a
variant of PLS.

PLS can be naturally extended to regression problems. The predictor and
predicted (response) variables are each considered as a block of variables. PLS
then extracts the score vectors which serve as a new predictor representation

C. Saunders et al. (Eds.): SLSFS 2005, LNCS 3940, pp. 34–51, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and regresses the response variables on these new predictors. The natural asym-
metry between predictor and response variables is reflected in the way in which
score vectors are computed. This variant is known under the names of PLS1 (one
response variable) and PLS2 (at least two response variables). PLS regression
used to be overlooked by statisticians and is still considered rather an algorithm
than a rigorous statistical model [14]. Yet within the last years, interest in the
statistical properties of PLS has risen. PLS has been related to other regression
methods like Principal Component Regression (PCR) [26] and Ridge Regression
(RR) [16] and all these methods can be cast under a unifying approach called
continuum regression [40, 9]. The effectiveness of PLS has been studied theoret-
ically in terms of its variance [32] and its shrinkage properties [12, 21, 7]. The
performance of PLS is investigated in several simulation studies [11, 1].

PLS can also be applied to classification problems by encoding the class mem-
bership in an appropriate indicator matrix. There is a close connection of PLS
for classification to Fisher Discriminant Analysis (FDA) [4]. PLS can be applied
as a discrimination tool and dimension reduction method–similar to Principal
Component Analysis (PCA). After relevant latent vectors are extracted, an ap-
propriate classifier can be applied. The combination of PLS with Support Vector
Machines (SVM) has been studied in [35].

Finally, the powerful machinery of kernel-based learning can be applied to
PLS. Kernel methods are an elegant way of extending linear data analysis tools
to nonlinear problems [38].

2 Partial Least Squares

Consider the general setting of a linear PLS algorithm to model the relation be-
tween two data sets (blocks of variables). Denote by X ⊂ RN an N -dimensional
space of variables representing the first block and similarly by Y ⊂ RM a space
representing the second block of variables. PLS models the relations between
these two blocks by means of score vectors. After observing n data samples
from each block of variables, PLS decomposes the (n×N) matrix of zero-mean
variables X and the (n×M) matrix of zero-mean variables Y into the form

X = TPT + E
Y = UQT + F

(1)

where the T, U are (n×p) matrices of the p extracted score vectors (components,
latent vectors), the (N × p) matrix P and the (M × p) matrix Q represent
matrices of loadings and the (n × N) matrix E and the (n ×M) matrix F are
the matrices of residuals. The PLS method, which in its classical form is based
on the nonlinear iterative partial least squares (NIPALS) algorithm [47], finds
weight vectors w, c such that

[cov(t,u)]2 = [cov(Xw,Yc)]2 = max|r|=|s|=1[cov(Xr,Ys)]2 (2)

where cov(t,u) = tT u/n denotes the sample covariance between the score vec-
tors t and u. The NIPALS algorithm starts with random initialisation of the
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Y-space score vector u and repeats a sequence of the following steps until
convergence.

1) w = XT u/(uT u) 4) c = YT t/(tT t)
2) ‖w‖ → 1 5) ‖c‖ → 1
3) t = Xw 6) u = Yc

Note that u = y if M = 1, that is, Y is a one-dimensional vector that we denote
by y. In this case the NIPALS procedure converges in a single iteration.

It can be shown that the weight vector w also corresponds to the first
eigenvector of the following eigenvalue problem [17]

XT YYT Xw = λw (3)

The X - and Y-space score vectors t and u are then given as

t = Xw and u = Yc (4)

where the weight vector c is define in steps 4 and 5 of NIPALS. Similarly, eigen-
value problems for the extraction of t, u or c estimates can be derived [17].
The user then solves for one of these eigenvalue problems and the other score or
weight vectors are readily computable using the relations defined in NIPALS.

2.1 Forms of PLS

PLS is an iterative process. After the extraction of the score vectors t, u the
matrices X and Y are deflated by subtracting their rank-one approximations
based on t and u. Different forms of deflation define several variants of PLS.

Using equations (1) the vectors of loadings p and q are computed as coeffi-
cients of regressing X on t and Y on u, respectively

p = XT t/(tT t) and q = YT u/(uT u)

PLS Mode A: The PLS Mode A is based on rank-one deflation of individual
block matrices using the corresponding score and loading vectors. In each
iteration of PLS Mode A the X and Y matrices are deflated

X = X− tpT and Y = Y − uqT

This approach was originally designed by Herman Wold [47] to model the
relations between the different sets (blocks) of data. In contrast to the PLS
regression approach, discussed next, the relation between the two blocks
is symmetric. As such this approach seems to be appropriate for modeling
existing relations between sets of variables in contrast to prediction purposes.
In this way PLS Mode A is similar to CCA. Wegelin [45] discusses and
compares properties of both methods. The connection between PLS and
CCA from the point of an optimisation criterion involved in each method is
discussed in Section 2.2.
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PLS1, PLS2: PLS1 (one of the block of data consists of a single variable) and
PLS2 (both blocks are multidimensional) are used as PLS regression meth-
ods. These variants of PLS are the most frequently used PLS approaches.
The relationship between X and Y is asymmetric. Two assumptions are
made: i) the score vectors {ti}p

i=1 are good predictors of Y; p denotes the
number of extracted score vectors–PLS iterations ii) a linear inner relation
between the scores vectors t and u exists; that is,

U = TD + H (5)

where D is the (p×p) diagonal matrix and H denotes the matrix of residuals.
The asymmetric assumption of the predictor–predicted variable(s) relation is
transformed into a deflation scheme where the predictor space, say X, score
vectors {ti}p

i=1 are good predictors of Y. The score vectors are then used to
deflate Y, that is, a component of the regression of Y on t is removed from
Y at each iteration of PLS

X = X− tpT and Y = Y − ttT Y/(tT t) = Y − tcT

where we consider not scaled to unit norm weight vectors c defined in step
4 of NIPALS. This deflation scheme guarantees mutual orthogonality of the
extracted score vectors {ti}p

i=1 [17]. Note that in PLS1 the deflation of y is
technically not needed during the iterations of PLS [17].
Singular values of the cross-product matrix XT Y correspond to the sample
covariance values [17]. Then the deflation scheme of extracting one compo-
nent at a time has also the following interesting property. The first singular
value of the deflated cross-product matrix XT Y at iteration i + 1 is greater
or equal than the second singular value of XT Y at iteration i [17]. This
result can be also applied to the relation of eigenvalues of (3) due to the fact
that (3) corresponds to the singular value decomposition of the transposed
cross-product matrix XT Y. In particular, the PLS1 and PLS2 algorithms
differ from the computation of all eigenvectors of (3) in one step.

PLS-SB: As outlined at the end of the previous paragraph the computation of
all eigenvectors of (3) at once would define another form of PLS. This com-
putation involves a sequence of implicit rank-one deflations of the overall
cross-product matrix. This form of PLS was used in [36] and in accordance
with [45] it is denoted as PLS-SB. In contrast to PLS1 and PLS2, the ex-
tracted score vectors {ti}p

i=1 are in general not mutually orthogonal.
SIMPLS: To avoid deflation steps at each iteration of PLS1 and PLS2, de

Jong [8] has introduced another form of PLS denoted SIMPLS. The SIMPLS
approach directly finds the weight vectors {w̃}p

i=1 which are applied to the
original not deflated matrix X. The criterion of the mutually orthogonal score
vectors {t̃}p

i=1 is kept. It has been shown that SIMPLS is equal to PLS1 but
differs from PLS2 when applied to the multidimensional matrix Y [8].
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2.2 PCA, CCA and PLS

There exists a variety of different projection methods to latent variables. Among
others widely used, PCA and CCA belong to this category. The connections
between PCA, CCA and PLS can be seen through the optimisation criterion
they use to define projection directions. PCA projects the original variables
onto a direction of maximal variance called principal direction. Following the
notation of (2), the optimisation criterion of PCA can be written as

max|r|=1[var(Xr)]

where var(t) = tT t/n denotes the sample variance. Similarly CCA finds the
direction of maximal correlation solving the following optimisation problem

max|r|=|s|=1[corr(Xr,Ys)]2

where [corr(t,u)]2 = [cov(t,u)]2/var(t)var(u) denotes the sample squared cor-
relation. It is easy to see that the PLS criterion (2)

max|r|=|s|=1[cov(Xr,Ys)]2 = max|r|=|s|=1var(Xr)[corr(Xr,Ys)]2var(Ys) (6)

represents a form of CCA where the criterion of maximal correlation is balanced
with the requirement to explain as much variance as possible in both X - and
Y-spaces. Note that in the case of a one-dimensional Y-space only the X -space
variance is involved.

The relation between CCA and PLS can be also seen through the concept of
canonical ridge analysis introduced in [41]. Consider the following optimisation
problem

max
|r|=|s|=1

cov(Xr,Ys)2

([1− γX] var(Xr) + γX) ([1− γY] var(Ys) + γY)

with 0 ≤ γX, γY ≤ 1 representing regularisation terms. The corresponding eigen-
value problem providing the solution to this optimisation criterion is given as

([1− γX]XT X + γXI)−1XT Y([1 − γY]YT Y + γYI)−1YT Xw = λw (7)

where w represents a weight vector for the projection of the original X -space
data into a latent space.1 There are two cornerstone solutions of this eigenvalue
problem: i) for γX = 0, γY = 0 the solution of CCA is obtained [24] ii) for
γX = 1, γY = 1 the PLS eigenvalue problem (3) is recovered. By continuous
changing of γX, γY solutions lying between these two cornerstones are obtained.
In Figure 1 the w directions for two-class problem as found by PLS, CCA and
regularised CCA (γX = 0.99, γY = 0) are plotted.

Another interesting setting is γX = 1, γY = 0 which represents a form of
orthonormalised PLS where the Y-space data variance does not influence the
1 In the analogous way the eigenvalue problem for the projections of the Y-space data

can be formulated.
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Fig. 1. An example of the weight vector w directions as found by CCA (solid line),
PLS (dash-dotted line) and regularised CCA (dashed line) given by (7) with γX = 0.99
and γY = 0. Circle and cross samples represent two Gaussian distributed classes with
different sample means and covariances.

final PLS solution (similarly the X -space variance can be ignored by setting
γX = 0, γY = 1) [53]. Note that in the case of one-dimensional Y matrix and for
γX ∈ (0, 1) the ridge regression solution is obtained [41, 16]. Finally let us stress
that, in general, CCA is solved in a way similar to PLS-SB, that is, eigenvectors
and eigenvalues of (7) are extracted at once by an implicit deflation of the cross-
product matrix XT Y. This is in contrast to the PLS1 and PLS2 approaches
where different deflation scheme is considered.

3 PLS Regression

As mentioned in the previous section, PLS1 and PLS2 can be used to solve linear
regression problems. Combining assumption (5) of a linear relation between the
scores vectors t and u with the decomposition of the Y matrix, equation (1) can
be written as

Y = TDQT + (HQT + F)

This defines the equation
Y = TCT + F∗ (8)

where CT = DQT now denotes the (p×M) matrix of regression coefficients and
F∗ = HQT +F is the residual matrix. Equation (8) is simply the decomposition
of Y using ordinary least squares regression with orthogonal predictors T.

We now consider orthonormalised score vectors t, that is, TT T = I, and the
matrix C = YT T of the not scaled to length one weight vectors c. It is useful
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to redefine equation (8) in terms of the original predictors X. To do this, we use
the relationship [23]

T = XW(PT W)−1

where P is the matrix of loading vectors defined in (1). Plugging this relation
into (8), we yield

Y = XB + F∗

where B represents the matrix of regression coefficients

B = W(PT W)−1CT = XT U(TT XXT U)−1TT Y

For the last equality, the relations among T, U, W and P are used [23, 17, 33].
Note that different scalings of the individual score vectors t and u do not influ-
ence the B matrix. For training data the estimate of PLS regression is

Ŷ = XB = TTT Y = TCT

and for testing data we have

Ŷt = XtB = TtTT Y = TtCT

where Xt and Tt = XtXT U(TT XXT U)−1 represent the matrices of testing
data and score vectors, respectively.

3.1 Algebraic Interpretation of Linear Regression

In this paragraph, we only consider PLS1, that is, the output data y is a one-
dimensional vector. The linear regression model is usually subsumed in the
relation

y = Xb + e (9)

with b the unknown regression vector and e a vector of independent identically
distributed noise with var(e) = σ2. In what follows, we will make intensive use
of the singular value decomposition of X

X = VΣST (10)

with V and S orthonormal matrices and Σ a diagonal matrix that consists of
the singular values of X. The matrix Λ = Σ2 is diagonal with elements λi . Set

A ≡ XT X = SΛST and z ≡ XT y

The ordinary least squares (OLS) estimator b̂OLS is the solution of

arg min
b
‖y−Xb‖2

This problem is equivalent to computing the solution of the normal equations

Ab = z (11)
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Using the pseudoinverse of A−, it follows (recall (10)) that

b̂OLS = A−z =
rk(A)∑
i=1

vT
i y√
λi

si =
rk(A)∑
i=1

b̂i

where

b̂i =
vT

i y√
λi

si

is the component of b̂OLS along vi and rk(.) denotes the rank of a matrix.
A lot of linear regression estimators are approximate solutions of the equation

(11). The PCR estimator that regresses y on the first p principal components
v1, . . . ,vp is

b̂PCR =
p∑

i=1

b̂i

The RR estimator [41, 16] is of the form

b̂RR = (A + γI)−1z =
rk(A)∑
i=1

λi

λi + γ
b̂i

with γ > 0 the ridge parameter.
It can be shown that the PLS algorithm is equivalent to the conjugate gra-

dient method [15]. This is a procedure that iteratively computes approximate
solutions of (11) by minimising the quadratic function

1
2
bT Ab− zT b

along directions that are A-orthogonal. The approximate solution obtained after
p steps is equal to the PLS estimator obtained after p iterations.

The conjugate gradient algorithm is in turn closely related to the Lanczos
algorithm [19], a method for approximating eigenvalues. The space spanned by
the columns of

K = (z,Az, . . . ,Ap−1z)

is called the p-dimensional Krylov space of A and z. We denote this Krylov
space by K. In the Lanczos algorithm, an orthogonal basis

W = (w1, . . . ,wp) (12)

of K is computed. The linear map A restricted to K for an element k ∈ K
is defined as the orthogonal projection of Ak onto the space K. The map is
represented by the p× p matrix

L = WT AW

This matrix is tridiagonal. Its p eigenvector-eigenvalue pairs

(ri , μi) (13)
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are called Ritz pairs. They are the best approximation of the eigenpairs of A
given only the information that is encoded in K [30].

The weight vectors w in (2) of PLS1 are identical to the basis vectors in (12).
In particular, the weight vectors are a basis of the Krylov space and the PLS
estimator is the solution of the optimisation problem

arg min
b

‖y −Xb‖2

subject to b ∈ K

In this sense, PLS1 can be viewed as a regularised least squares fit.
A good references for the Lanczos method and the conjugate gradient method

is [30]. The connection to PLS is well-elaborated in [31].

3.2 Shrinkage Properties of PLS Regression

One possibility to evaluate the quality of an estimator b̂ for b is to determine
its Mean Squared Error (MSE), which is defined as

MSE(b̂) = E

[(
b̂− b

)T (
b̂− b

)]

=
(
E
[
b̂
]
− b

)T (
E
[
b̂
]
− b

)
+ E

[(
b̂− E

[
b̂
])T (

b̂− E
[
b̂
])]

This is the well-known bias-variance decomposition of MSE. The first part is the
squared bias and the second part is the variance term.

It is well known that the OLS estimator has no bias (if b ∈ range(A) ). The
variance term depends on the non-zero eigenvalues of A: if some eigenvalues are
very small, the variance of b̂OLS can be very high, which leads to a high MSE
value. Note that small eigenvalues λi of A correspond to principal directions vi

of X that have a low sample spread.
One possibility to decrease MSE is to modify the OLS estimator by shrinking

the directions of the OLS estimator that are responsible for a high variance. In
general, a shrinkage estimator for b is of the form

b̂shr =
rk(A)∑
i=1

f(λi)b̂i (14)

where f(.) is some real-valued function. The values f(λi) are called shrinkage
factors. Examples are PCR

f(λi) =
{

1 , i ≤ p
0 , i > p

and RR

f(λi) =
λi

λi + γ
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If the factors in (14) do not depend on y, that is, b̂shr is linear in y, any factor
f(λi) �= 1 increases the bias of the i-th component. The variance of the i-th
component decreases for |f(λi)| < 1 and increases for |f(λi)| > 1 . The OLS
estimator is shrunk in the hope that the increase in bias is small compared to
the decrease in variance.

The PLS estimator is a shrinkage estimator as well. Its shrinkage factors are
closely related to the Ritz pairs (13). The shrinkage factors f(λi) that correspond
to the estimator b̂PLS after p iterations of PLS are [21, 31]

f (λi) = 1−
p∏

j=1

(
1− λi

μj

)

The shrinkage factors have some remarkable properties [7, 21]. Most importantly,
f(λi) > 1 can occur for certain combinations of i and p . Note however that the
PLS estimator is not linear in y. The factors f(λi) depend on the eigenvalues
(13) of the matrix L and L in turn depends, via z, on y. It is therefore not clear
in which way this shrinkage behaviour influences MSE of PLS1.
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Fig. 2. An illustration of the shrinkage behaviour of PLS1. The X matrix contains
eight variables. The eigenvalues of A ≡ XT X are enumerated in decreasing order,
λ1 ≥ λ2 ≥ . . . and the shrinkage factors f(λi) are plotted as a function of i. The
amount of absolute shrinkage |1 − f(λi)| is particularly prominent if p is small.

4 PLS Discrimination and Classification

PLS has been used for discrimination and classification purposes. The close
connection between FDA, CCA and PLS in the discrimination and classification
scenario is described in this section.
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Consider a set of n samples {xi ∈ X ⊂ RN}n
i=1 representing the data from

g classes (groups). Now define the (n× g− 1) class membership matrix Y to be

Y =

⎛
⎜⎜⎜⎝

1n1 0n1 . . . 0n1

0n2 1n2 . . . 0n2

...
...

. . . 1ng−1

0ng 0ng . . . 0ng

⎞
⎟⎟⎟⎠

where {ni}g
i=1 denotes the number of samples in each class,

∑g
i=1 ni = n and

0ni and 1ni are (ni × 1) vectors of all zeros and ones, respectively. Let

SX =
1

n− 1
XT X , SY =

1
n− 1

YT Y and SXY =
1

n− 1
XT Y

be the sample estimates of the covariance matrices ΣX and ΣY, respectively,
and the cross-product covariance matrix ΣXY. Again, the matrices X and Y
are considered to be zero-mean. Furthermore, let

H =
g∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T , E =
g∑

i=1

ni∑
j=1

(xj
i − x̄i)(x

j
i − x̄i)T

represent the among-classes and within-classes sums-of-squares, where xj
i repre-

sents an N -dimensional vector for the j-th sample in the i-th class and

x̄i =
1
ni

ni∑
j=1

xj
i and x̄ =

1
n

g∑
i=1

ni∑
j=1

xj
i

Fisher developed a discrimination method based on a linear projection of
the input data such that among-classes variance is maximised relative to the
within-classes variance. The directions onto which the input data are projected
are given by the eigenvectors a of the eigenvalue problem

E−1Ha = λa

In the case of discriminating multi-normally distributed classes with the same
covariance matrices, FDA finds the same discrimination directions as linear dis-
criminant analysis using Bayes theorem to estimate posterior class probabilities.
This is the method that provides the discrimination rule with minimal expected
misclassification error [24, 13].

The fact that the Fisher’s discrimination directions are identical to the direc-
tions given by CCA using a dummy matrix Y for group membership was first
recognised in [5]. The connections between PLS and CCA have been methodically
studied in [4]. Among other, the authors argue that the Y-space penalty var(Ys)
is not meaningful and suggested to remove it from (6) in the PLS discrimination
scenario. As mentioned in Section 2.2 this modification leads to a special case of
the previously proposed orthonormalised PLS method [53] using the indicator
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matrix Y. The eigenvalue problem (3) in the case of orthonormalised PLS is
transformed into

XT Y(YT Y)−1YT Xw = XT ỸỸT Xw = λw (15)

where
Ỹ = Y(YT Y)−1/2

represents a matrix of uncorrelated and normalised output variables. Using the
following relation [4, 35]

(n− 1)SXYS−1
Y ST

XY = H

the eigenvectors of (15) are equivalent to the eigensolutions of

Hw = λw (16)

Thus, this modified PLS method is based on eigensolutions of the among-classes
sum-of-squares matrix H which connects this approach to CCA or equivalently
to FDA.

Interestingly, in the case of two-class discrimination the direction of the first
orthonormalised PLS score vector t is identical with the first score vector found
by either the PLS1 or PLS-SB methods. This immediately follows from the
fact that YT Y is a number in this case. In this two-class scenario XT Y is of
a rank-one matrix and PLS-SB extracts only one score vector t. In contrast,
orthonormalised PLS can extract additional score vectors, up to the rank of X,
each being similar to directions computed with CCA or FDA on deflated feature
space matrices. Thus, PLS provide more principled dimensionality reduction in
comparison to PCA based on the criterion of maximum data variation in the
X -space alone.

In the case of multi-class discrimination the rank of the Y matrix is equal
to g − 1 which determines the maximum number of score vectors that may be
extracted by the orthonormalised PLS-SB method.2 Again, similar to the one-
dimensional output scenario the deflation of the Y matrix at each step can be
done using the score vectors t of PLS2. Consider this deflation scheme in the X -
and Y-spaces

Xd = X− tpT = (I− ttT /(tT t))X = PdX

Ỹd = PdỸ

where Pd = PT
d Pd represents a projection matrix. Using these deflated matrices

Xd and Ỹd the eigenproblem (15) can be written in the form

XT
d ỸỸT Xdw = λw

2 It is considered here that g ≤ N , otherwise the number of score vectors is given by
N .
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Thus, similar to the previous two-class discrimination the solution of this eigen-
problem can be interpreted as the solution of (16) using the among-classes sum-
of-squares matrix now computed on deflated matrix Xd.

A natural further step is to project the original, observed data onto the ob-
tained weight vector directions and to build a classifier using this new, projected
data representation–PLS score vectors. Support vector machines, logistic regres-
sion or other methods for classification can be applied on the extracted PLS
score vectors.

5 Nonlinear PLS

In many areas of research and industrial situations data can exhibit nonlinear
behaviour. Two major approaches to model nonlinear data relations by means
of PLS exist.

A) The first group of approaches is based on reformulating the considered
linear relation (5) between the score vectors t and u by a nonlinear model

u = g(t) + h = g(X,w) + h

where g(.) represents a continuous function modeling the existing nonlinear re-
lation. Again, h denotes a vector of residuals. Polynomial functions, smoothing
splines, artificial neural networks or radial basis function networks have been
used to model g(.) [51, 10, 50, 3].3 The assumption that the score vectors t and
u are linear projections of the original variables is kept. This leads to the neces-
sity of a linearisation of the nonlinear mapping g(.) by means of Taylor series
expansions and to the successive iterative update of the weight vectors w [51, 3].

B) The second approach to nonlinear PLS is based on a mapping of the orig-
inal data by means of a nonlinear function to a new representation (data space)
where linear PLS is applied. The recently developed theory of kernel-based learn-
ing has been also applied to PLS. The nonlinear kernel PLS methodology was
proposed for the modeling of relations between sets of observed variables, regres-
sion and classification problems [34, 35]. The idea of the kernel PLS approach
is based on the mapping of the original X -space data into a high-dimensional
feature space F corresponding to a reproducing kernel Hilbert space [2, 38]

x ∈ X → Φ(x) ∈ F

By applying the kernel trick the estimation of PLS in a feature space F reduces
to the use of linear algebra as simple as in linear PLS [34]. The kernel trick uses
the fact that a value of a dot product between two vectors in F can be evaluated
by the kernel function [2, 38]

k(x,y) = Φ(x)T Φ(y), ∀ x,y ∈ X
3 Note that the below described concept of kernel-based learning can also be used for

modeling nonlinear relation between t and u. An example would be a support vector
regression model for g(.) [38].
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Define the Gram matrix K of the cross dot products between all mapped input
data points, that is, K = ΦΦT , where Φ denotes the matrix of mapped X -space
data {Φ(xi) ∈ F}n

i=1. The kernel trick implies that the elements i, j of K are
equal to the values of the kernel function k(xi,xj). Now, consider a modified
version of the NIPALS algorithm where we merge steps 1 and 3 and we scale to
unit norm vectors t and u instead of the vectors w and c. We obtain the kernel
form of the NIPALS algorithm [34, 20]4

1) t = ΦΦT u = Ku 4) u = Yc
2) ‖t‖ → 1 5) ‖u‖ → 1
3) c = YT t

Note that steps 3 and 4 can be further merged which may become useful in
applications where an analogous kernel mapping of the Y-space is considered.
The kernel PLS approach has been proved to be competitive with the other
kernel classification and regression approaches like SVM, kernel RR or kernel
FDA [38, 37].
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Fig. 3. An example of kernel PLS regression. The generated function z(.) is shown as
a solid line. Plus markers represent noisy representation of z(.) used as training output
points in kernel PLS regression. Kernel PLS regression using the first one, four and
eight score vectors is shown as a dashed, dotted and dash-dotted line, respectively.

When both A) and B) approaches are compared it is difficult to define the
favourable methodology. While the kernel PLS approach is easily implementable,
computationally less demanding and capable to model difficult nonlinear rela-
tions, a loss of the interpretability of the results with respect to the original
4 In the case of the one-dimensional Y-space computationally more efficient kernel

PLS algorithms have been proposed in [35, 27].
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data limits its use in some applications. On the other hand it is not difficult
to construct data situations where the first approach of keeping latent variables
as linear projections of the original data may not be adequate. In practice a
researcher needs to decide about the adequacy of using a particular approach
based on the problem in hands and requirements like simplicity of the solution
and implementation or interpretation of the results.

In Figure 3 an example of kernel PLS regression is depicted. We generated
one hundred uniformly spaced samples in the range [0, 3.5] and computed the
corresponding values of the function [42]

z(x) = 4.26(exp (−x)− 4 exp (−2x) + 3 exp (−3x))

Additional one hundred Gaussian distributed samples with zero-mean and vari-
ance equal to 0.04 representing noise were generated and added to the com-
puted values. The values of noisy z(.) function were subsequently centered. The
Gaussian kernel function k(x,y) = exp(− ‖x−y‖2

h ) with the width h equal to 1.8
was used.

6 Conclusions

PLS has been proven to be a very powerful versatile data analytical tool applied
in many areas of research and industrial applications. Computational and im-
plementation simplicity of PLS is a strong aspect of the approach which favours
PLS to be used as a first step to understand the existing relations and to analyse
real world data. The PLS method projects original data onto a more compact
space of latent variables. Among many advantages of such an approach is the
ability to analyse the importance of individual observed variables potentially
leading to the deletion of unimportant variables. This mainly occurs in the case
of an experimental design where many insignificant terms are measured. In such
situations PLS can guide the practitioner into more compact experimental set-
tings with a significant cost reduction and without a high risk associated with
the “blind” variables deletion. Examples of this aspect of PLS are experiments
on finger movement detection and cognitive fatigue prediction where a signifi-
cant reduction of the EEG recording electrodes have been achieved without the
loss of classification accuracy of the considered PLS models [35, 43]. Further im-
portant aspect of PLS is the ability to visualise high-dimensional data through
the set of extracted latent variables. The diagnostic PLS tools based on score
and loadings plots allows to better understand data structure, observe existing
relations among data sets but also to detect outliers in the measured data.

Successful application of PLS on regression problems associated with many
real world data have also attracted attention of statisticians to this method.
Although PLS regression is still considered as a method or algorithm rather
than a rigorous statistical model, recent advances in understanding of shrinkage
properties of PLS regression helped to connect PLS regression with other, in
statistical community better understood, shrinkage regression methods like PCR
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or RR. Moreover, these studies have shown very competitive behaviour of PLS
regression in comparison to the other shrinkage regression methods. We believe
that further research will reveal additional aspects of PLS regression and will help
to better theoretically define structures of data and regression problems where
the use of PLS will become beneficial in comparison to the other methods.

Two major approaches of constructing nonlinear PLS have been mentioned.
Among other nonlinear versions of PLS, kernel PLS represents an elegant way
of dealing with nonlinear aspects of measured data. This method keeps compu-
tational and implementation simplicity of linear PLS while providing a powerful
modeling, regression, discrimination or classification tool. Kernel PLS approach
has been proven to be competitive with the other state-of-the-art kernel-based
regression and classification methods.

Connections between PCA, (regularised) CCA and PLS have been high-
lighted (see [6] for detailed comparison). Understanding of these connections
should help to design new algorithms by combining good properties of individ-
ual methods and thus resulting in more powerful machine learning tools.
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Abstract. Random projection is a simple technique that has had a
number of applications in algorithm design. In the context of machine
learning, it can provide insight into questions such as “why is a learning
problem easier if data is separable by a large margin?” and “in what sense
is choosing a kernel much like choosing a set of features?” This talk is
intended to provide an introduction to random projection and to survey
some simple learning algorithms and other applications to learning based
on it. I will also discuss how, given a kernel as a black-box function, we
can use various forms of random projection to extract an explicit small
feature space that captures much of what the kernel is doing. This talk
is based in large part on work in [BB05, BBV04] joint with Nina Balcan
and Santosh Vempala.

1 Introduction

Random projection is a technique that has found substantial use in the area
of algorithm design (especially approximation algorithms), by allowing one to
substantially reduce dimensionality of a problem while still retaining a significant
degree of problem structure. In particular, given n points in Euclidean space
(of any dimension but which we can think of as Rn), we can project these
points down to a random d-dimensional subspace for d � n, with the following
outcomes:

1. If d = ω( 1
γ2 log n) then Johnson-Lindenstrauss type results (described below)

imply that with high probability, relative distances and angles between all
pairs of points are approximately preserved up to 1± γ.

2. If d = 1 (i.e., we project points onto a random line) we can often still get
something useful.

Projections of the first type have had a number of uses including fast approxi-
mate nearest-neighbor algorithms [IM98, EK00] and approximate clustering al-
gorithms [Sch00] among others. Projections of the second type are often used
for “rounding” a semidefinite-programming relaxation, such as for the Max-CUT
problem [GW95], and have been used for various graph-layout problems [Vem98].

The purpose of this survey is to describe some ways that this technique can
be used (either practically, or for providing insight) in the context of machine
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learning. In particular, random projection can provide a simple way to see why
data that is separable by a large margin is easy for learning even if data lies
in a high-dimensional space (e.g., because such data can be randomly projected
down to a low dimensional space without affecting separability, and therefore
it is “really” a low-dimensional problem after all). It can also suggest some
especially simple algorithms. In addition, random projection (of various types)
can be used to provide an interesting perspective on kernel functions, and also
provide a mechanism for converting a kernel function into an explicit feature
space.

The use of Johnson-Lindenstrauss type results in the context of learning was
first proposed by Arriaga and Vempala [AV99], and a number of uses of random
projection in learning are discussed in [Vem04]. Experimental work on using
random projection has been performed in [FM03, GBN05, Das00]. This survey,
in addition to background material, focuses primarily on work in [BB05, BBV04].
Except in a few places (e.g., Theorem 1, Lemma 1) we give only sketches and
basic intuition for proofs, leaving the full proofs to the papers cited.

1.1 The Setting

We are considering the standard PAC-style setting of supervised learning from
i.i.d. data. Specifically, we assume that examples are given to us according to
some probability distribution D over an instance space X and labeled by some
unknown target function c : X → {−1, +1}. We use P = (D, c) to denote the
combined distribution over labeled examples. Given some sample S of labeled
training examples (each drawn independently from D and labeled by c), our
objective is to come up with a hypothesis h with low true error: that is, we want
Prx∼D(h(x) �= c(x)) to be low. In the discussion below, by a “learning problem”
we mean a distribution P = (D, c) over labeled examples.

In the first part of this survey (Sections 2 and 3), we will think of the input
space X as Euclidean space, like Rn. In the second part (Section 4), we will
discuss kernel functions, in which case one should think of X as just some ab-
stract space, and a kernel function K : X ×X → [−1, 1] is then some function
that provides a measure of similarity between two input points. Formally, one
requires for a legal kernel K that there exist some implicit function φ mapping X
into a (possibly very high-dimensional) space, such that K(x, y) = φ(x) ·φ(y). In
fact, one interesting property of some of the results we discuss is that they make
sense to apply even if K is just an arbitrary similarity function, and not a “legal”
kernel, though the theorems make sense only if such a φ exists. Extensions of
this framework to more general similarity functions are given in [BB06].

Definition 1. We say that a set S of labeled examples is linearly separable
by margin γ if there exists a unit-length vector w such that:

min
(x,�)∈S

[�(w · x)/||x||] ≥ γ.

That is, the separator w · x ≥ 0 has margin γ if every labeled example in S is
correctly classified and furthermore the cosine of the angle between w and x has
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magnitude at least γ.1 For simplicity, we are only considering separators that
pass through the origin, though results we discuss can be adapted to the general
case as well.

We can similarly talk in terms of the distribution P rather than a sample S.

Definition 2. We say that P is linearly separable by margin γ if there
exists a unit-length vector w such that:

Pr
(x,�)∼P

[�(w · x)/||x|| < γ] = 0,

and we say that P is separable with error α at margin γ if there exists a
unit-length vector w such that:

Pr
(x,�)∼P

[�(w · x)/||x|| < γ] ≤ α.

A powerful theoretical result in machine learning is that if a learning problem is
linearly separable by a large margin γ, then that makes the problem “easy” in the
sense that to achieve good generalization one needs only a number of examples
that depends (polynomially) on 1/γ, with no dependence on the dimension of
the ambient space X that examples lie in. In fact, two results of this form are:

1. The classic Perceptron Convergence Theorem that the Perceptron Algorithm
makes at most 1/γ2 mistakes on any sequence of examples separable by
margin γ [Blo62, Nov62, MP69]. Thus, if the Perceptron algorithm is run
on a sample of size 1/(εγ2), the expected error rate of its hypothesis at a
random point in time is at most ε. (For further results of this form, see
[Lit89, FS99]).

2. The more recent margin bounds of [STBWA98, BST99] that state that
|S| = O(1

ε [ 1
γ2 log2( 1

γε) + log 1
δ ]) is sufficient so that with high probability,

any linear separator of S with margin γ has true error at most ε. Thus, this
provides a sample complexity bound that applies to any algorithm that finds
large-margin separators.

In the next two sections, we give two more ways of seeing why having a large
margin makes a learning problem easy, both based on the idea of random
projection.

2 An Extremely Simple Learning Algorithm

In this section, we show how the idea of random projection can be used to get an
extremely simple algorithm (almost embarrassingly so) for weak-learning, with
1 Often margin is defined without normalizing by the length of the examples, though

in that case the “γ2” term in sample complexity bounds becomes “γ2/R2”, where R
is the maximum ||x|| over x ∈ S. Technically, normalizing produces a stronger bound
because we are taking the minimum of a ratio, rather than the ratio of a minimum
to a maximum.
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error rate 1/2− γ/4, whenever a learning problem is linearly separable by some
margin γ. This can then be plugged into Boosting [Sch90, FS97], to achieve
strong-learning. This material is taken from [BB05].

In particular, the algorithm is as follows.

Algorithm 1 (Weak-learning a linear separator)

1. Pick a random linear separator. Specifically, choose a random unit-length
vector h and consider the separator h · x ≥ 0. (Equivalently, project data to
the 1-dimensional line spanned by h and consider labeling positive numbers
as positive and negative numbers as negative.)

2. Evaluate the error of the separator selected in Step 1. If the error is at most
1/2− γ/4 then halt with success, else go back to 1.

Theorem 1. If P is separable by margin γ then a random linear separator will
have error at most 1

2 − γ/4 with probability Ω(γ).

In particular, Theorem 1 implies that the above algorithm will in expectation
repeat only O(1/γ) times before halting.2

Proof. Consider a (positive) example x such that x · w∗/||x|| ≥ γ. The angle
between x and w∗ is then some value α ≤ π/2 − γ. Now, a random vector h,
when projected onto the 2-dimensional plane defined by x and w∗, looks like a
random vector in this plane. Therefore, we have (see Figure 1):

Pr
h

(h · x ≤ 0|h · w∗ ≥ 0) = α/π ≤ 1/2− γ/π.

Similarly, for a negative example x, for which x · w∗/||x|| ≤ −γ, we have:

Pr
h

(h · x ≥ 0|h · w∗ ≥ 0) ≤ 1/2− γ/π.

Therefore, if we define h(x) to be the classifier defined by h · x ≥ 0, we have:

E[err(h)|h · w∗ ≥ 0] ≤ 1/2− γ/π.

Finally, since the error rate of any hypothesis is bounded between 0 and 1, and
a random vector h has a 1/2 chance of satisfying h ·w∗ ≥ 0, it must be the case
that:

Prh[err(h) ≤ 1/2−γ/4] = Ω(γ). ��

2 For simplicity, we have presented Algorithm 1 as if it can exactly evaluate the true
error of its chosen hypothesis in Step 2. Technically, we should change Step 2 to
talk about empirical error, using an intermediate value such as 1/2 − γ/6. In that
case, sample size O( 1

γ2 log 1
γ
) is sufficient to be able to run Algorithm 1 for O(1/γ)

repetitions, and evaluate the error rate of each hypothesis produced to sufficient
precision.
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h · x ≥ 0 h · x ≤ 0

w*

x
α

Fig. 1. For random h, conditioned on h · w∗ ≥ 0, we have Pr(h · x ≤ 0) = α/π and
Pr(h · x ≥ 0) = 1 − α/π

3 The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma [JL84, DG02, IM98] states that given a set
S of points in Rn, if we perform an orthogonal projection of those points onto a
random d-dimensional subspace, then d = O( 1

γ2 log |S|) is sufficient so that with
high probability all pairwise distances are preserved up to 1± γ (up to scaling).
Conceptually, one can think of a random projection as first applying a random
rotation to Rn and then reading off the first d coordinates. In fact, a number of
different forms of “random projection” are known to work (including some that
are especially efficient to perform computationally, considered in [Ach03, AV99]).
In particular, if we think of performing the projection via multiplying all points,
viewed as row-vectors of length n, by an n× d matrix A, then several methods
for selecting A that provide the desired result are:

1. Choosing its columns to be d random orthogonal unit-length vectors (a true
random orthogonal projection).

2. Choosing each entry in A independently from a standard Gaussian (so the
projection can be viewed as selecting d vectors u1, u2, . . . , ud from a spherical
gaussian and mapping a point p to (p · u1, . . . , p · ud).

3. Choosing each entry in A to be 1 or −1 independently at random.

Some especially nice proofs for the Johnson-Lindenstrauss Lemma are given by
Indyk and Motwani [IM98] and Dasgupta and Gupta [DG02]. Here, we just
give the basic structure and intuition for the argument. In particular, consider
two points pi and pj in the input and their difference vij = pi − pj . So, we
are interested in the length of vijA. Fixing vij , let us think of each of the d
coordinates y1, . . . , yd in the vector y = vijA as random variables (over the
choice of A). Then, in each form of projection above, these d random variables are
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nearly independent (in fact, in forms (2) and (3) they are completely independent
random variables). This allows us to use a Chernoff-style bound to argue that
d = O( 1

γ2 log 1
δ ) is sufficient so that with probability 1− δ, y2

1 + . . . + y2
d will be

within 1±γ of its expectation. This in turn implies that the length of y is within
1± γ of its expectation. Finally, using δ = o(1/n2) we have by the union bound
that with high probability this is satisfied simultaneously for all pairs of points
pi, pj in the input.

Formally, here is a convenient form of the Johnson-Lindenstrauss Lemma
given in [AV99]. Let N(0, 1) denote the standard Normal distribution with mean
0 and variance 1, and U(−1, 1) denote the distribution that has probability 1/2
on −1 and probability 1/2 on 1.

Theorem 2 (Neuronal RP [AV99]). Let u, v ∈ Rn. Let u′ = 1√
d
uA and v′ =

1√
d
vA where A is a n×d random matrix whose entries are chosen independently

from either N(0, 1) or U(−1, 1). Then,

Pr
A

[
(1− γ)||u− v||2 ≤ ||u′ − v′||2 ≤ (1 + γ)||u− v||2

]
≥ 1− 2e−(γ2−γ3) d

4 .

Theorem 2 suggests a natural learning algorithm: first randomly project data
into a lower dimensional space, and then run some other algorithm in that space,
taking advantage of the speedup produced by working over fewer dimensions.
Theoretical results for some algorithms of this form are given in [AV99], and
experimental results are given in [FM03, GBN05, Das00].

3.1 The Johnson-Lindenstrauss Lemma and Margins

The Johnson-Lindenstrauss lemma provides a particularly intuitive way to see
why one should be able to generalize well from only a small amount of training
data when a learning problem is separable by a large margin. In particular,
imagine a set S of data in some high-dimensional space, and suppose that we
randomly project the data down to Rd. By the Johnson-Lindenstrauss Lemma,
d = O(γ−2 log |S|) is sufficient so that with high probability, all angles between
points (viewed as vectors) change by at most ±γ/2.3 In particular, consider
projecting all points in S and the target vector w∗; if initially data was separable
by margin γ, then after projection, since angles with w∗ have changed by at most
γ/2, the data is still separable (and in fact separable by margin γ/2). Thus, this
means our problem was in some sense really only a d-dimensional problem after
all. Moreover, if we replace the “log |S|” term in the bound for d with “log 1

ε ”,
then we can use Theorem 2 to get that with high probability at least a 1 − ε
fraction of S will be separable. Formally, talking in terms of the true distribution
P , one can state the following theorem. (Proofs appear in, e.g., [AV99, BBV04].)

3 The Johnson-Lindenstrauss Lemma talks about relative distances being approxi-
mately preserved, but it is a straightforward calculation to show that this implies
angles must be approximately preserved as well.
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Theorem 3. If P is linearly separable by margin γ, then d = O
(

1
γ2 log( 1

εδ )
)

is

sufficient so that with probability at least 1− δ, a random projection down to Rd

will be linearly separable with error at most ε at margin γ/2.

So, Theorem 3 can be viewed as stating that a learning problem separable by
margin γ is really only an “O(1/γ2)-dimensional problem” after all.

4 Random Projection, Kernel Functions, and Feature
Selection

4.1 Introduction

Kernel functions [BGV92, CV95, FS99, MMR+01, STBWA98, Vap98] have be-
come a powerful tool in Machine Learning. A kernel function can be viewed
as allowing one to implicitly map data into a high-dimensional space and to
perform certain operations there without paying a high price computationally.
Furthermore, margin bounds imply that if the learning problem has a large
margin linear separator in that space, then one can avoid paying a high price in
terms of sample size as well.

Combining kernel functions with the Johnson-Lindenstrauss Lemma (in par-
ticular, Theorem 3 above), we have that if a learning problem indeed has the
large margin property under kernel K(x, y) = φ(x) · φ(y), then a random lin-
ear projection of the “φ-space” down to a low dimensional space approximately
preserves linear separability. This means that for any kernel K under which
the learning problem is linearly separable by margin γ in the φ-space, we can, in
principle, think of K as mapping the input space X into an Õ(1/γ2)-dimensional
space, in essence serving as a method for representing the data in a new (and
not too large) feature space.

The question we now consider is whether, given kernel K as a black-box
function, we can in fact produce such a mapping efficiently. The problem with the
above observation is that it requires explicitly computing the function φ(x). Since
for a given kernel K, the dimensionality of the φ-space might be quite large, this
is not efficient.4 Instead, what we would like is an efficient procedure that given
K(., .) as a black-box program, produces a mapping with the desired properties
using running time that depends (polynomially) only on 1/γ and the time to
compute the kernel function K, with no dependence on the dimensionality of
the φ-space. This would mean we can effectively convert a kernel K that is good
for some learning problem into an explicit set of features, without a need for
“kernelizing” our learning algorithm. In this section, we describe several methods
for doing so; this work is taken from [BBV04].

Specifically, we will show the following. Given black-box access to a kernel
function K(x, y), access to unlabeled examples from distribution D, and para-
meters γ, ε, and δ, we can in polynomial time construct a mapping F : X → Rd

4 In addition, it is not totally clear how to apply Theorem 2 if the dimension of the
φ-space is infinite.
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(i.e., to a set of d real-valued features) where d = O
(

1
γ2 log 1

εδ

)
, such that if the

target concept indeed has margin γ in the φ-space, then with probability 1− δ
(over randomization in our choice of mapping function), the induced distribution
in Rd is separable with error ≤ ε. In fact, not only will the data in Rd be sepa-
rable, but it will be separable with a margin γ′ = Ω(γ). (If the original learning
problem was separable with error α at margin γ then the induced distribution
is separable with error α + ε at margin γ′.)

To give a feel of what such a mapping might look like, suppose we are will-
ing to use dimension d = O(1

ε [ 1
γ2 + ln 1

δ ]) (so this is linear in 1/ε rather than
logarithmic) and we are not concerned with preserving margins and only want
approximate separability. Then we show the following especially simple proce-
dure suffices. Just draw a random sample of d unlabeled points x1, . . . , xd from
D and define F (x) = (K(x, x1), . . . , K(x, xd)).5 That is, if we think of K not so
much as an implicit mapping into a high-dimensional space but just as a simi-
larity function over examples, what we are doing is drawing d “reference” points
and then defining the ith feature of x to be its similarity with reference point
i. Corollary 1 (in Section 4.3 below) shows that under the assumption that the
target function has margin γ in the φ space, with high probability the data will
be approximately separable under this mapping. Thus, this gives a particularly
simple way of using the kernel and unlabeled data for feature generation.

Given these results, a natural question is whether it might be possible to
perform mappings of this type without access to the underlying distribution. In
Section 4.6 we show that this is in general not possible, given only black-box
access (and polynomially-many queries) to an arbitrary kernel K. However, it
may well be possible for specific standard kernels such as the polynomial kernel
or the gaussian kernel.

4.2 Additional Definitions

In analogy to Definition 2, we will say that P is separable by margin γ in
the φ-space if there exists a unit-length vector w in the φ-space such that
Pr(x,�)∼P [�(w · φ(x))/||φ(x)|| < γ] = 0, and similarly that P is separable with
error α at margin γ in the φ-space if the above holds with “= 0” replaced by
“≤ α”.

For a set of vectors v1, v2, . . . , vk in Euclidean space, let span(v1, . . . , vk)
denote the span of these vectors: that is, the set of vectors u that can be written
as a linear combination a1v1 + . . . + akvk. Also, for a vector u and a subspace
Y , let proj(u, Y ) be the orthogonal projection of u down to Y . So, for instance,
proj(u, span(v1, . . . , vk)) is the orthogonal projection of u down to the space
spanned by v1, . . . , vk. We note that given a set of vectors v1, . . . , vk and the
ability to compute dot-products, this projection can be computed efficiently by
solving a set of linear equalities.

5 In contrast, the Johnson-Lindenstrauss Lemma as presented in Theorem 2 would
draw d Gaussian (or uniform {−1, +1}) random points r1, . . . , rd in the φ-space and
define F (x) = (φ(x) · r1, . . . , φ(x) · rd).
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4.3 Two Simple Mappings

Our goal is a procedure that given black-box access to a kernel function K(., .),
unlabeled examples from distribution D, and a margin value γ, produces a map-
ping F : X → Rd with the following property: if the target function indeed has
margin γ in the φ-space, then with high probability F approximately preserves
linear separability. In this section, we analyze two methods that both produce a
space of dimension O(1

ε [ 1
γ2 + ln 1

δ ]), such that with probability 1 − δ the result
is separable with error at most ε. The second of these mappings in fact satisfies
a stronger condition that its output will be approximately separable at margin
γ/2 (rather than just approximately separable). This property will allow us to
use this mapping as a first step in a better mapping in Section 4.4.

The following lemma is key to our analysis.

Lemma 1. Consider any distribution over labeled examples in Euclidean space
such that there exists a linear separator w · x = 0 with margin γ. If we draw

d ≥ 8
ε

[
1
γ2 + ln

1
δ

]
examples z1, . . . , zd iid from this distribution, with probability ≥ 1−δ, there exists
a vector w′ in span(z1, . . . , zd) that has error at most ε at margin γ/2.

Remark 1. Before proving Lemma 1, we remark that a somewhat weaker bound
on d can be derived from the machinery of margin bounds. Margin bounds
[STBWA98, BST99] tell us that using d = O(1

ε [ 1
γ2 log2( 1

γε)+ log 1
δ ]) points, with

probability 1−δ, any separator with margin ≥ γ over the observed data has true
error ≤ ε. Thus, the projection of the target function w into the space spanned
by the observed data will have true error ≤ ε as well. (Projecting w into this
space maintains the value of w · zi, while possibly shrinking the vector w, which
can only increase the margin over the observed data.) The only technical issue
is that we want as a conclusion for the separator not only to have a low error
rate over the distribution, but also to have a large margin. However, this can
be obtained from the double-sample argument used in [STBWA98, BST99] by
using a γ/4-cover instead of a γ/2-cover. Margin bounds, however, are a bit of
an overkill for our needs, since we are only asking for an existential statement
(the existence of w′) and not a universal statement about all separators with
large empirical margins. For this reason we are able to get a better bound by a
direct argument from first principles.

Proof (Lemma 1). For any set of points S, let win(S) be the projection of w to
span(S), and let wout(S) be the orthogonal portion of w, so that w = win(S) +
wout(S) and win(S) ⊥ wout(S). Also, for convenience, assume w and all examples
z are unit-length vectors (since we have defined margins in terms of angles, we
can do this without loss of generality). Now, let us make the following definitions.
Say that wout(S) is large if Prz(|wout(S) · z| > γ/2) ≥ ε, and otherwise say
that wout(S) is small. Notice that if wout(S) is small, we are done, because
w · z = (win(S) · z) + (wout(S) · z), which means that win(S) has the properties
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we want. That is, there is at most an ε probability mass of points z whose dot-
product with w and win(S) differ by more than γ/2. So, we need only to consider
what happens when wout(S) is large.

The crux of the proof now is that if wout(S) is large, this means that a
new random point z has at least an ε chance of significantly improving the
set S. Specifically, consider z such that |wout(S) · z| > γ/2. Let zin(S) be the
projection of z to span(S), let zout(S) = z−zin(S) be the portion of z orthogonal
to span(S), and let z′ = zout(S)/||zout(S)||. Now, for S′ = S ∪ {z}, we have
wout(S′) = wout(S)−proj(wout(S), span(S′)) = wout(S)− (wout(S) ·z′)z′, where
the last equality holds because wout(S) is orthogonal to span(S) and so its
projection onto span(S′) is the same as its projection onto z′. Finally, since
wout(S′) is orthogonal to z′ we have ||wout(S′)||2 = ||wout(S)||2− |wout(S) · z′|2,
and since |wout(S) · z′| ≥ |wout(S) · zout(S)| = |wout(S) · z|, this implies by
definition of z that ||wout(S′)||2 < ||wout(S)||2 − (γ/2)2.

So, we have a situation where so long as wout is large, each example has
at least an ε chance of reducing ||wout||2 by at least γ2/4, and since ||w||2 =
||wout(∅)||2 = 1, this can happen at most 4/γ2 times. Chernoff bounds state
that a coin of bias ε flipped n = 8

ε

[
1
γ2 + ln 1

δ

]
times will with probability 1− δ

have at least nε/2 ≥ 4/γ2 heads. Together, these imply that with probability at
least 1− δ, wout(S) will be small for |S| ≥ 8

ε

[
1
γ2 + ln 1

δ

]
as desired. ��

Lemma 1 implies that if P is linearly separable with margin γ under K, and we
draw d = 8

ε [ 1
γ2 + ln 1

δ ] random unlabeled examples x1, . . . , xn from D, then with
probability at least 1− δ there is a separator w′ in the φ-space with error rate
at most ε that can be written as

w′ = α1φ(x1) + . . . + αdφ(xd).

Notice that since w′ ·φ(x) = α1K(x, x1)+ . . .+αdK(x, xd), an immediate impli-
cation is that if we simply think of K(x, xi) as the ith “feature” of x — that is,
if we define F1(x) = (K(x, x1), . . . , K(x, xd)) — then with high probability the
vector (α1, . . . , αd) is an approximate linear separator of F1(P ). So, the kernel
and distribution together give us a particularly simple way of performing fea-
ture generation that preserves (approximate) separability. Formally, we have the
following.

Corollary 1. If P has margin γ in the φ-space, then with probability ≥ 1 − δ,
if x1, . . . , xd are drawn from D for d = 8

ε

[
1
γ2 + ln 1

δ

]
, the mapping

F1(x) = (K(x, x1), . . . , K(x, xd))

produces a distribution F1(P ) on labeled examples in Rd that is linearly separable
with error at most ε.

Unfortunately, the above mapping F1 may not preserve margins because we
do not have a good bound on the length of the vector (α1, . . . , αd) defining
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the separator in the new space, or the length of the examples F1(x). The key
problem is that if many of the φ(xi) are very similar, then their associated
features K(x, xi) will be highly correlated. Instead, to preserve margin we want
to choose an orthonormal basis of the space spanned by the φ(xi): i.e., to do an
orthogonal projection of φ(x) into this space. Specifically, let S = {x1, ..., xd} be
a set of 8

ε [ 1
γ2 + ln 1

δ ] unlabeled examples from D as in Corollary 1. We can then
implement the desired orthogonal projection of φ(x) as follows. Run K(x, y)
for all pairs x, y ∈ S, and let M(S) = (K(xi, xj))xi,xj∈S be the resulting kernel
matrix. Now decompose M(S) into UT U , where U is an upper-triangular matrix.
Finally, define the mapping F2 : X → Rd to be F2(x) = F1(x)U−1, where F1
is the mapping of Corollary 1. This is equivalent to an orthogonal projection of
φ(x) into span(φ(x1), . . . , φ(xd)). Technically, if U is not full rank then we want
to use the (Moore-Penrose) pseudoinverse [BIG74] of U in place of U−1.

By Lemma 1, this mapping F2 maintains approximate separability at margin
γ/2 (See [BBV04] for a full proof):

Theorem 4. If P has margin γ in the φ-space, then with probability ≥ 1 − δ,
the mapping F2 : X → Rd for d ≥ 8

ε

[
1
γ2 + ln 1

δ

]
has the property that F2(P ) is

linearly separable with error at most ε at margin γ/2.

Notice that the running time to compute F2(x) is polynomial in 1/γ, 1/ε, 1/δ
and the time to compute the kernel function K.

4.4 An Improved Mapping

We now describe an improved mapping, in which the dimension d has only
a logarithmic, rather than linear, dependence on 1/ε. The idea is to perform
a two-stage process, composing the mapping from the previous section with
an additional Johnson-Lindenstrauss style mapping to reduce dimensionality
even further. Thus, this mapping can be thought of as combining two types of
random projection: a projection based on points chosen at random from D, and
a projection based on choosing points uniformly at random in the intermediate
space.

In particular, let F2 : X → Rd2 be the mapping from Section 4.3 using ε/2
and δ/2 as its error and confidence parameters respectively. Let F̂ : Rd2 → Rd3

be a random projection as in Theorem 2. Then consider the overall mapping
F3 : X → Rd3 to be F3(x) = F̂ (F2(x)).

We now claim that for d2 = O(1
ε [ 1

γ2 + ln 1
δ ]) and d3 = O( 1

γ2 log( 1
εδ )), with

high probability, this mapping has the desired properties. The basic argument is
that the initial mapping F2 maintains approximate separability at margin γ/2 by
Lemma 1, and then the second mapping approximately preserves this property
by Theorem 2. In particular, we have (see [BBV04] for a full proof):

Theorem 5. If P has margin γ in the φ-space, then with probability at least
1 − δ, the mapping F3 = F̂ ◦ F2 : X → Rd3 , for values d2 = O

(
1
ε

[
1
γ2 + ln 1

δ

])
and d3 = O

(
1
γ2 log( 1

εδ )
)
, has the property that F3(P ) is linearly separable with

error at most ε at margin γ/4.
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As before, the running time to compute our mappings is polynomial in 1/γ,
1/ε, 1/δ and the time to compute the kernel function K.

Since the dimension d3 of the mapping in Theorem 5 is only logarithmic in
1/ε, this means that if P is perfectly separable with margin γ in the φ-space,
we can set ε to be small enough so that with high probability, a sample of size
O(d3 log d3) would be perfectly separable. That is, we could use an arbitrary
noise-free linear-separator learning algorithm in Rd3 to learn the target concept.
However, this requires using d2 = Õ(1/γ4) (i.e., Õ(1/γ4) unlabeled examples to
construct the mapping).

Corollary 2. Given ε′, δ, γ < 1, if P has margin γ in the φ-space, then Õ( 1
ε′γ4 )

unlabeled examples are sufficient so that with probability 1−δ, mapping F3 : X →
Rd3 has the property that F3(P ) is linearly separable with error o(ε′/(d3 log d3)),
where d3 = O( 1

γ2 log 1
ε′γδ ).

4.5 A Few Extensions

So far, we have assumed that the distribution P is perfectly separable with mar-
gin γ in the φ-space. Suppose, however, that P is only separable with error
α at margin γ. That is, there exists a vector w in the φ-space that correctly
classifies a 1 − α probability mass of examples by margin at least γ, but the
remaining α probability mass may be either within the margin or incorrectly
classified. In that case, we can apply all the previous results to the 1−α portion
of the distribution that is correctly separated by margin γ, and the remain-
ing α probability mass of examples may or may not behave as desired. Thus
all preceding results (Lemma 1, Corollary 1, Theorem 4, and Theorem 5) still
hold, but with ε replaced by (1 − α)ε + α in the error rate of the resulting
mapping.

Another extension is to the case that the target separator does not pass
through the origin: that is, it is of the form w · φ(x) ≥ β for some value β.
If our kernel function is normalized, so that ||φ(x)|| = 1 for all x ∈ X , then
all results carry over directly (note that one can normalize any kernel K by
defining K̂(x, x′) = K(x, x′)/

√
K(x, x)K(x′, x′)). In particular, all our results

follow from arguments showing that the cosine of the angle between w and
φ(x) changes by at most ε due to the reduction in dimension. If the kernel is
not normalized, then results still carry over if one is willing to divide by the
maximum value of ||φ(x)||, but we do not know if results carry over if one wishes
to be truly translation-independent, say bounding only the radius of the smallest
ball enclosing all φ(x) but not necessarily centered at the origin.

4.6 On the Necessity of Access to D

Our algorithms construct mappings F : X → Rd using black-box access to
the kernel function K(x, y) together with unlabeled examples from the input
distribution D. It is natural to ask whether it might be possible to remove the
need for access to D. In particular, notice that the mapping resulting from the
Johnson-Lindenstrauss lemma has nothing to do with the input distribution:
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if we have access to the φ-space, then no matter what the distribution is, a
random projection down to Rd will approximately preserve the existence of a
large-margin separator with high probability.6 So perhaps such a mapping F
can be produced by just computing K on some polynomial number of cleverly-
chosen (or uniform random) points in X . (Let us assume X is a “nice” space
such as the unit ball or {0, 1}n that can be randomly sampled.) In this section,
we show this is not possible in general for an arbitrary black-box kernel. This
leaves open, however, the case of specific natural kernels.

One way to view the result of this section is as follows. If we define a fea-
ture space based on dot-products with uniform or gaussian-random points in
the φ-space, then we know this will work by the Johnson-Lindenstrauss lemma.
However, this requires explicit access to the φ-space. Alternatively, using Corol-
lary 1 we can define features based on dot-products with points φ(x) for x ∈ X ,
which only requires implicit access to the φ-space through the kernel. However,
this procedure needs to use D to select the points x. What we show here is that
such use of D is necessary: if we define features based on points φ(x) for uniform
random x ∈ X , or any other distribution that does not depend on D, then there
will exist kernels for which this does not work.

We demonstrate the necessity of access to D as follows. Consider X = {0, 1}n,
let X ′ be a random subset of 2n/2 elements of X , and let D be the uniform dis-
tribution on X ′. For a given target function c, we will define a special φ-function
φc such that c is a large margin separator in the φ-space under distribution D,
but that only the points in X ′ behave nicely, and points not in X ′ provide no
useful information. Specifically, consider φc : X → R2 defined as:

φc(x) =

⎧⎨
⎩

(1, 0) if x �∈ X ′

(−1/2,
√

3/2) if x ∈ X ′ and c(x) = 1
(−1/2,−

√
3/2) if x ∈ X ′ and c(x) = −1

See figure 2. This then induces the kernel:

Kc(x, y) =
{

1 if x, y �∈ X ′ or [x, y ∈ X ′ and c(x) = c(y)]
−1/2 otherwise

Notice that the distribution P = (D, c) over labeled examples has margin γ =√
3/2 in the φ-space.

Theorem 6. Suppose an algorithm makes polynomially many calls to a black-
box kernel function over input space {0, 1}n and produces a mapping F : X → Rd

where d is polynomial in n. Then for random X ′ and random c in the above
construction, with high probability F (P ) will not even be weakly-separable (even
though P has margin γ =

√
3/2 in the φ-space).

6 To be clear about the order of quantification, the statement is that for any distrib-
ution, a random projection will work with high probability. However, for any given
projection, there may exist bad distributions. So, even if we could define a mapping
of the sort desired, we would still expect the algorithm to be randomized.
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120

x in X’

x in X’
c(x)=−1

c(x)=1

x not in X’

Fig. 2. Function φc used in lower bound

Proof Sketch: Consider any algorithm with black-box access to K attempting
to create a mapping F : X → Rd. Since X ′ is a random exponentially-small
fraction of X , with high probability all calls made to K when constructing the
function F are on inputs not in X ′. Let us assume this indeed is the case. This
implies that (a) all calls made to K when constructing the function F return the
value 1, and (b) at “runtime” when x chosen from D (i.e., when F is used to map
training data), even though the function F (x) may itself call K(x, y) for different
previously-seen points y, these will all give K(x, y) = −1/2. In particular, this
means that F (x) is independent of the target function c. Finally, since X ′ has
size 2n/2 and d is only polynomial in n, we have by simply counting the number
of possible partitions of F (X ′) by halfspaces that with high probability F (P )
will not even be weakly separable for a random function c over X ′. Specifically,
for any given halfspace, the probability over choice of c that it has error less than
1/2 − ε is exponentially small in |X ′| (by Hoeffding bounds), which is doubly-
exponentially small in n, whereas there are “only” 2O(dn) possible partitions by
halfspaces. ��

The above construction corresponds to a scenario in which “real data” (the
points in X ′) are so sparse and special that an algorithm without access to D
is not able to construct anything that looks even remotely like a real data point
by itself (e.g., examples are pixel images of outdoor scenes and yet our poor
learning algorithm has no knowledge of vision and can only construct white
noise). Furthermore, it relies on a kernel that only does something interesting on
the real data (giving nothing useful for x �∈ X ′). It is conceivable that positive
results independent of the distribution D can be achieved for standard, natural
kernels.
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5 Conclusions and Open Problems

This survey has examined ways in which random projection (of various forms)
can provide algorithms for, and insight into, problems in machine learning. For
example, if a learning problem is separable by a large margin γ, then a ran-
dom projection to a space of dimension O( 1

γ2 log 1
εδ ) will with high probability

approximately preserve separability, so we can think of the problem as really
an O(1/γ2)-dimensional problem after all. In addition, we saw that just pick-
ing a random separator (which can be thought of as projecting to a random
1-dimensional space) has a reasonable chance of producing a weak hypothesis.

We also saw how given black-box access to a kernel function K and a distri-
bution D (i.e., unlabeled examples) we can use K and D together to construct a
new low-dimensional feature space in which to place the data that approximately
preserves the desired properties of the kernel. Thus, through this mapping, we
can think of a kernel as in some sense providing a distribution-dependent feature
space. One interesting aspect of the simplest method considered, namely choos-
ing x1, . . . , xd from D and then using the mapping x �→ (K(x, x1), . . . , K(x, xd)),
is that it can be applied to any generic “similarity” function K(x, y), even those
that are not necessarily legal kernels and do not necessarily have the same inter-
pretation as computing a dot-product in some implicit φ-space. Recent results
of [BB06] extend some of these guarantees to this more general setting.

One concrete open question is whether, for natural standard kernel functions,
one can produce mappings F : X → Rd in an oblivious manner, without using
examples from the data distribution. The Johnson-Lindenstrauss lemma tells us
that such mappings exist, but the goal is to produce them without explicitly
computing the φ-function. Barring that, perhaps one can at least reduce the
unlabeled sample-complexity of our approach. On the practical side, it would
be interesting to further explore the alternatives that these (or other) mappings
provide to widely used algorithms such as SVM and Kernel Perceptron.
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Abstract. Latent structure models involve real, potentially observable
variables and latent, unobservable variables. The framework includes
various particular types of model, such as factor analysis, latent class
analysis, latent trait analysis, latent profile models, mixtures of factor
analysers, state-space models and others. The simplest scenario, of a
single discrete latent variable, includes finite mixture models, hidden
Markov chain models and hidden Markov random field models. The pa-
per gives a brief tutorial of the application of maximum likelihood and
Bayesian approaches to the estimation of parameters within these mod-
els, emphasising especially the fact that computational complexity varies
greatly among the different scenarios. In the case of a single discrete
latent variable, the issue of assessing its cardinality is discussed. Tech-
niques such as the EM algorithm, Markov chain Monte Carlo methods
and variational approximations are mentioned.

1 Latent-Variable Fundamentals

We begin by establishing notation. Let y denote observable data for an ex-
perimental unit, let z denote missing or otherwise unobservable data and let
x = (y, z) denote the corresponding complete data. Then probability functions
(densities or mass functions according as the variables are discrete or continu-
ous) are indicated as follows: f(y, z) for y and z jointly, g(y|z) for y conditional
on z, and f(y) and h(z) as marginals for y and z respectively. These functions
satisfy the relationships

f(y) =
∫

f(y, z)dz

=
∫

g(y|z)h(z)dz,

where the integration is replaced by summation if z is discrete. Also of inter-
est might be the other conditional probability function, h(z|y), which can be
expressed as

h(z|y) = f(y, z)/f(y) ∝ g(y|z)h(z),

which is essentially an expression of Bayes’ Theorem.
In latent-structure contexts, z represents latent variables, introduced to cre-

ate flexible models, rather than ‘real’ items, although often real, physical inter-
pretations are surmised for the latent variables, in the case of factor analysis,
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for example. If y = (y1, . . . , yp) is p-dimensional, corresponding to p observable
characteristics, then Bartholomew [1] proposes that

g(y|z) =
∏

i

gi(yi|z),

which ensures that it is the dependence of the yi on the latent variables z that
accounts fully for the mutual dependence among the yi.

2 Simple Particular Cases

There are a number of simple particular cases, depending on the natures of the
observed variables y and the latent variables z:

– the case of y continuous and z continuous corresponds to factor analysis;
– the case of y continuous and z discrete corresponds to latent profile analysis

[2] or cooperative vector quantisation [3];
– the case of y discrete and z continuous corresponds to latent trait analysis

[4] or density networks [5];
– the case of y discrete and z discrete corresponds to latent class analysis [6]

or naive Bayesian networks [7].

It is noteworthy that, in three of the cases, two nomenclatures are given for
the same structure, one from the statistics literature and one more prevalent in
the machine learning/computer science literature; this emphasises the fact that
these models are of common interest to these two research communities.

A number of general remarks can be made: in all but factor analysis z is
usually univariate, although review and development of the case of multivariate
z is provided by Dunmur and Titterington [8]; if however z is multivariate then
its components are usually assumed to be independent; continuous variables are
usually assumed to be Gaussian, especially within z; and discrete variables are
usually categorical or binary, rather than numerical or ordinal. Other variations
include mixtures of factor-analysers, in which y contains continuous variables
and z includes some continuous variables and at least one categorical variable
[9] [10].

We now present the above four special cases in the form of statistical models.

1. Factor analysis:
y = Wz + e,

where z ∼ N(0, I) and e ∼ N(0, Λ) with z and e independent and Λ diagonal.
The dimensionality of z is normally less than p, the dimensionality of y.

2. Latent profile analysis:
y = WZ + e,

where Z is a matrix of indicators for multinomially generated z and e is as
in factor analysis.
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3. Latent trait analysis:

g(yis = 1|z) ∝ exp(w0is + w

isz),

where {yis} are elements of an indicator vector representing the ith compo-
nent of y. There are obvious constraints, in that we must have

∑
s g(yis =

1|z) = 1 for each i. Also, for identifiability, constraints such as w0i1 =
0, wi1 = 0, for each i, must be imposed. Thus the conditional distributions
associated with y given z correspond to linear logistic regression models.

4. Latent class analysis:
The conditional probabilities g(yis = 1|z = u) are multinomial probabilities
that sum to 1 over s, for each i, and h(z = u) are multinomial probabilities
that sum to 1 over u.

3 Issues of Interest

At a general level there are two main issues, listed here in arguably the reverse
of the correct order of fundamental importance!

– Estimation of the chosen model, i.e. of relevant parameters, according to
some paradigm; we shall describe likelihood-based and Bayesian approaches.
By ‘parameters’ we mean items such as W and Λ in the factor analysis model,
and so on.

– Estimation or selection of the model structure itself, and in particular the
appropriate level of complexity, in some sense, of z: the more complex the
structure of z is, the more ‘flexible’ is the latent-structure model for y.

Inference will be based on representative data, possibly supplemented with ‘prior’
information. The data will consist of a number of realisations of the observables:

Dy = {y(n), n = 1, . . . , N}.

Thus N represents the number of experimental units in the dataset and often
corresponds to ‘sample size’ in statistical terminology. The fact that the data
are ‘incomplete’, with the latent variables Dz = {z(n), n = 1, . . . , N} being
unobservable, complicates matters, but so also might other aspects of the model
structure, as we shall see.

Suppose that Dx = {(y(n), z(n)), n = 1, . . . , N} denotes the complete data,
and that the total set of parameters is

θ = (φ, η),

where φ and η denote parameters within the models for y|z and z respectively.
(In this respect the factor analysis model is rather special, in that φ = (W, Λ) and
there is no unknown η.) Then likelihood and Bayesian inference for θ should be
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based on the observed-data likelihood, defined by the marginal density associated
with the observed data but regarded as a function of θ,

f(Dy|θ) =
∑
Dz

f(Dx|θ), (1)

where here we are assuming that the variables within z are discrete and, in
expanded form,

f(Dx|θ) = g(Dy|Dz, φ)h(Dz |η).

Note that Bayesian inference about θ should be based on the posterior density

p(θ|Dy) ∝ f(Dy|θ) p(θ),

where p(θ) is a prior density for θ.
Were Dz not latent but known, then the basis for inference would be the

usually much simpler f(Dx|θ), in the case of likelihood inference, or the corre-
sponding p(θ|Dx) if the Bayesian approach is being adopted. The marginalisation
operation depicted in (1) typically creates quite a complicated object.

4 The Case of a Single Categorical Latent Variable

Suppose that each hidden z(n) is categorical, with K categories, denoted by
{1, . . . , K}, and that the conditional density of y(n), given that z(n) = k, is the
component density gk(y(n)|φk). Often Gaussian component densities are used,
in which case φk contains the mean vector and covariance matrix of the kth
component density.

As we have just seen, the function of key interest, as the observed-data likeli-
hood, is the joint density for Dy. The complexity of this density will be dictated
by the pattern of dependence, marginally, among the y(n)’s. We shall assume
that the different y(n)’s are conditionally independent, given the z(n)’s and that
y(n) depends only on z(n) and not on any other part of Dz, so that

g(Dy|Dz, φ) =
∏
n

g(y(n)|z(n), φ);

we shall consider different possibilities for the dependence structure among the
z(n)’s.

1. Case 1: z(n)’s independent. If the z(n)’s are independent then so, marginally,
are the y(n)’s:

f(Dy|θ) =
∑
Dz

f(Dy, Dz|θ)

=
∑
Dz

g(Dy|Dz, φ)h(Dz|η)

=
∑
Dz

{
N∏

n=1

g(y(n)|z(n), φ)
N∏

n=1

h(z(n)|η)}
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=
N∏

n=1

{
K∑

k=1

gk(y(n)|φk)ηk},

where ηk = Prob(z(n) = k). In this case therefore the observed data consti-
tute a sample of size N from a mixture distribution, which might otherwise
be called a hidden multinomial. The mixture density is

f(y|θ) =
K∑

k=1

gk(y|φk) ηk,

and the {ηk} are called the mixing weights.

2. Case 2: z(n)’s following a Markov chain. In this case the y(n)’s correspond
to a hidden Markov (chain) model, much applied in economics and speech-
modelling contexts. (The version with continuous (Dy, Dz) corresponds to
state-space dynamic models.) In this case the computation of the observed-
data likelihood f(Dy|θ) is more complicated, essentially because the sum-
mation operation cannot be dealt with so simply, but in principle f(Dy|θ)
can be computed by a pass through the data.

3. Case 3: z(n)’s following a Markov random field. In this case the index set is
typically two-dimensional, corresponding to a lattice of N grid points. The
y(n)’s correspond to a noisy/hidden Markov random field model popular in
the statistical analysis of pixellated images [11]: here Dz represents the true
scene and Dy a noise-corrupted but observable version thereof. This scenario
includes simple versions of Boltzmann machines. The computation of the
observed-data likelihood f(Dy|θ) is typically not a practical proposition.

The next two sections deal with inference paradigms, and we shall see that in
each case the level of difficulty escalates as our attention moves from Case 1 to
Case 2 to Case 3, as has just been mentioned in the context of the calculation
of f(Dy|θ).

5 Maximum Likelihood Estimation

5.1 The EM Algorithm

The EM algorithm [12] is an iterative algorithm that aims to converge to maxi-
mum likelihood estimates in contexts involving incomplete data. From an initial
approximation θ(0), the algorithm generates a sequence {θ(r)} using the follow-
ing iterative double-step.

E-Step. Evaluate
Q(θ) = E{log f(Dx|θ)|Dy, θ(r)}.

M-Step. Calculate
θ(r+1) = arg maxθ Q(θ).
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Typically, f(Dy|θ(r+1)) ≥ f(Dy|θ(r)), so that the likelihood of interest in-
creases at each stage and, although there are exceptions to the rule, the algo-
rithm converges to at least a local, if not a global, maximum of the likelihood. In
summary, the E-Step calculates a (conditional) expectation of the corresponding
complete-data loglikelihood function and the M-step maximises that function.
The convenience of the algorithm depends on the ease with which the E-Step
and M-Step can be carried out, and we discuss this briefly in the context of the
three cases identified in the previous section.

So far as the M-Step is concerned, the level of difficulty is the same as that
which applies in the corresponding complete-data context. In most mixture prob-
lems and most hidden Markov chain contexts this is easy, but in the context of
hidden Markov random fields aspects of the M-Step are very difficult, as we shall
shortly illustrate. The E-Step for these models amounts to the calculation of ex-
pectations of the components of the indicator variables Dz; these expectations
are therefore probabilities of the various possible configurations for the latent
states, given the observed data. Difficulties in the E-Step are usually caused by
intractability of the distribution of Dx|Dy, θ(r) or equivalently of Dz|Dy, θ(r). As
a result of the independence properties with mixture data, the distribution of
Dz|Dy, θ(r) becomes the product model corresponding to the marginal distribu-
tions for z(n)|y(n), θ(r), for each n, and the E-Step in this case is straightforward.
For the hidden Markov chain case, the dependence among the z(n)’s does compli-
cate matters, but the dependence is Markovian and ‘one-dimensional’, and this
leads to the E-Step being computable by a single forwards and then backwards
pass through the data [13]. This case is therefore less trivial than for mixtures
but is not a serious problem. In the hidden Markov random field case, however,
the E-Step is dramatically more difficult; the dependence among the z(n)’s is
still Markovian, but is ‘two-dimensional’, and there is no simple analogue of the
forwards-backwards algorithm. We illustrate the difficulties in both steps with
the simplest example of a hidden Markov random field.

Example. Hidden Ising model.
Suppose the index set for Dz is a two-dimensional lattice and that

h(Dz) = h(Dz|η) = {G(η)}−1exp{η
∑
s∼t

z(s)z(t)},

where each z(n) ∈ {−1, +1}, so that each hidden variable is binary, η is a scalar
parameter, usually positive so as to reflect local spatial association, and the
summation is over (s, t) combinations of locations that are immediate vertical
or horizontal neighbours of each other on the lattice; this constitues the Ising
model of statistical physics. In this model the normalising constant G(η) is not
computable. This leads to there being no analytical form for the E-step and no
easy M-Step for η. For example, as mentioned earlier, the degree of difficulty of
the M-Step for η is the same as that of complete-data maximum likelihood, and
for the latter one would have to maximise h(Dz|η) with respect to η, which is
stymied by the complexity of G(η).
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What can be done if the EM algorithm becomes impracticable? A number
of possible approaches exist.

– With the Law of Large Numbers in mind, replace the E-Step by an appropri-
ate sample mean calculated from realisations of the conditional distribution
of Dz given Dy and θ(r). However, in the context of the hidden Ising model,
simulation from the relevant conditional distribution is not straightforward
and itself requires an iterative algorithm of the Markov chain Monte Carlo
type.

– Replace the complicated conditional distribution in the E-Step by a deter-
ministic, simpler approximation, e.g. a variational approximation. We give
more details of this in the next subsection, concentrating on it because of its
prominence in the recent computer science literature.

– Use variational (or other) approximations in the M-Step.
– Other suggestions exist including the consideration of methods other than

EM. For example, Younes [14] developed a gradient-based stochastic approx-
imation method and Geyer and Thompson [15] used Monte Carlo methods
to approximate the intractable normalisation constant and thereby attack
the likelihood function directly. In [16] a number of more ad hoc methods
are suggested for the image-analysis context, based on iterative restoration
of the true scene, perhaps using Besag’s [17] Iterative Conditional Modes
algorithm, alternated with parameter estimation with the help of Besag’s
pseudolikelihood [18] for the parameter η. The simplest form of the pseudo-
likelihood is the product of the full conditional densities for the individual
z(n)’s, given the rest of Dz. It is much easier to handle than the original
h(Dz|η) because there is no intractable normalisation constant, and yet the
maximiser of the pseudolikelihood is generally a consistent estimator of the
true η.

5.2 Variational Approximations

Suppose that h(Dz) is a complicated multivariate distribution, and that q(Dz)
is a proposed tractable approximation to h(Dz) with a specified structure. Then
one way of defining an optimal q of that structure is to minimise an appropri-
ate measure of distance between q and h, such as the Kullback-Leibler (KL)
divergence,

KL(q, h) =
∑
Dz

q(Dz) log {q(Dz)/h(Dz)}.

Often the form of q is determined by the solution of this variational optimisation
exercise, as are the values of (variational) hyperparameters that q contains. The
simplest model for q would be an independence model, i.e.

q(Dz) =
∏
n

qn(z(n)),

which leads to mean field approximations. Furthermore, variational approxima-
tions to the conditional distribution of Dz given Dy lead to lower bounds on the
observed-data loglikelihood. To see this note that
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log f(Dy|θ) = log {
∑
Dz

f(Dy, Dz|θ)}

≥
∑
Dz

q(Dz) log {f(Dy, Dz|θ)/q(Dz)},

by Jensen’s inequality. Typically, q is chosen to have a structure such that the
summation in the lower bound is easily achieved; the choice of a fully factorised
q is certainly advantageous in this respect, but it represents a simplifying ap-
proximation whose consequences should be investigated. It is straightforward to
show that the q, of any prescribed structure, that maximises the above lower
bound for log f(Dy|θ), minimises the KL divergence between q and the condi-
tional distribution for Dz given Dy and θ. An EM-like algorithm can be evolved
in which q and θ are successively updated in the equivalents of the E-Step and
M-Step respectively. Convergence of the resulting sequence of iterates for θ, to a
local maximum of the lower-bound surface, can be proved, but there is compar-
atively little theory about the relationship of such a maximum to the maximiser
of the observed-data likelihood itself, although some progress is reported in [19].
(If one can show that the maximiser of the lower-bound function tends to the
maximiser of the likelihood, asymptotically, then one can claim that the lower-
bound maximiser inherits the maximum likelihood estimator’s property of being
consistent for the true value of θ.)

The practicality of variational approximations relies on the computability of
the lower-bound function, and much of the relevant literature is restricted to
the case of a fully factorised qDz . However, more-refined approximations can be
developed in some contexts [20] [21]. It would also be of obvious value to obtain
corresponding upper bounds for log f(Dy|θ), but they are much harder to come
by and a general method for deriving them is as yet elusive.

Wainwright and Jordan [22] take a more general convex analysis approach to
defining variational approximations, although operational versions of the method
usually amount to optimising a KL divergence.

For an application of these ideas to latent profile analysis see [8], and for
a tutorial introduction to variational approximations see [23]. In earlier work,
Zhang [24] [25] used mean-field-type approximations within the EM-algorithm
in contexts such as image restoration based on underlying Markov random field
models.

6 The Bayesian Approach

6.1 Introduction

As already stated, Bayesian inference for the parameters in a model is based on

p(θ|Dy) ∝ f(Dy|θ) p(θ) = {
∑
Dz

f(Dx|θ)} p(θ),

where p(θ) is a prior density for θ. As with maximum likelihood, Bayesian analy-
sis is often vastly easier if Dz is not missing, in which case we use
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p(θ|Dx) ∝ f(Dx|θ) p(θ).

In many familiar cases, f(Dx|θ) corresponds to an exponential family model and
then there exists a family of neat closed-form conjugate priors for θ; the posterior
density p(θ|Dx) then belongs to the same conjugate family, with hyperparame-
ters that are easily written down; see for example Section 3.3 of [26]. This con-
venient pattern disappears if there are missing data, in this represented by Dz.
Inevitably non-exact methods are then needed, and most common approaches
can be categorised either as asymptotically exact but potentially unwieldy sim-
ulation methods, usually Markov chain Monte Carlo (MCMC) methods, or as
non-exact but less unwieldy deterministic approximations. The latter include
Laplace approximations [27] and variational Bayes approximations; we shall con-
centrate on the latter, again because of its high profile in recent machine-learning
literature.

Both these approaches aim to approximate

p(θ, Dz|Dy) ∝ f(Dx|θ) p(θ),

the joint posterior density of all unknown items, including the latent variables
as well as the parameters. Marginalisation then provides an approximation to
p(θ|Dy).

6.2 The MCMC Simulation Approach

This method aims to generate a set of simulated realisations from p(θ, Dz |Dy).
The resulting set of realisations of θ then form a sample from p(θ|Dy), and, for
example, the posterior mean of θ can be approximated by the empirical average
of the realisations of θ.

The now-standard approach to this is to generate a sequence of values of the
variables of interest from a Markov chain for which the equilibrium distribution
is p(θ, Dz|Dy). Once the equilibrium state has been reached, a realisation from
the required distribution has been generated. There are various general recipes
for formulating such a Markov chain, one of the simplest being Gibbs sampling.
This involves recursively sampling from the appropriate set of full conditional
distributions of the unknown items. A ‘block’ version of this for our problem
would involve iteratively simulating from p(θ|Dz, Dy) and p(Dz|θ, Dy). This is
typically easy for mixtures [28] and hidden Markov chains [29] but is problem-
atic with hidden Markov random fields [30]. As with maximum likelihood, the
intractability of the normalising constant is the major source of the difficulty.

The development and application of MCMC methods in Bayesian statistics
has caught on spectacularly during the quarter-century since the publication of
papers such as [31]; see for example [32] [33]. However, important issues remain
that are the subject of much current work, including the monitoring of conver-
gence, difficulties with large-scale problems, the invention of new samplers, and
the search for perfect samplers for which convergence at a specified stage can
be guaranteed. A variety of approximate MCMC approaches are described and
compared in [34].
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6.3 Variational Bayes Approximations

Suppose that q(θ, Dz) defines an approximation to p(θ, Dz|Dy) and suppose we
propose that q take the factorised form

q(θ, Dz) = qθ(θ)qDz (Dz).

Then the factors are chosen to minimise

KL(q, p) =
∫

θ

∑
Dz

q log (q/p),

in which p is an abbreviation for p(θ, Dz|Dy). The resulting qθ(θ) is regarded as
the approximation to p(θ|Dy).

The form of qθ is often the same as that which would result in the complete-
data case: if a prior p(θ) is chosen that is conjugate for the Bayesian analysis of
the complete data, Dx, then qθ also takes that convenient conjugate form but
calculation of the (hyper)parameters within qθ requires the solution of nonlinear
equations.

Once again, the analysis for mixtures and hidden Markov chains is compar-
atively ‘easy’, but the case of hidden Markov random fields is ‘hard’; see for
example [35] [36] [37] [38]. As in the case of likelihood-based variational approx-
imations, there is not much work on the theoretical properties of the method.
However, in a number of scenarios, including Gaussian mixture distributions,
Wang and Titterington have shown that the variational posterior mean is consis-
tent, see for example [39], but they have also shown that the variational posterior
variances can be unrealistically small, see for example [40].

For a review of variational and other approaches to Bayesian analysis in
models of this general type see [41].

7 A Brief Discussion of Model Selection

7.1 Non-bayesian Approaches

We continue to concentrate on the case of a single categorical latent variable,
and especially on mixture models. The model-selection issue of interest will be
the determination of an appropriate number K of components to be included in
the model. General non-Bayesian approaches include the following:

– selection of a parsimonious model, i.e. the minimum plausible K, by hypo-
thesis-testing;

– optimisation of criteria such as Akaike’s AIC [42] and Schwarz’s BIC [43].

However, it is well known that standard likelihood-ratio theory for nested mod-
els, based on the use of chi-squared distributions for testing hypotheses, breaks
down with mixture models. Various theoretical and practical directions have
been followed for trying to overcome this; among the latter is McLachlan’s [44]
use of bootstrap tests for mixtures.
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The criteria AIC and BIC impose penalties on the maximised likelihood to
penalise highly-parameterised models, so it is plausible that these instruments
should select a suitable value of K. This is by no means guaranteed, especially
for AIC, but, asymptotically at least, there are results showing that BIC selects
the right number of mixture components in at least some cases [45]. It should
be pointed out that AIC was developed with scenarios in mind in which, unlike
in the case of mixtures, there is the same sort of ‘regularity’ as is required for
standard likelihood-ratio theory.

7.2 Bayesian Approaches

We consider the following three approaches:

– model comparison using Bayes factors;

– use of Bayesian-based selection criteria (DIC);

– generation of a posterior distribution for the cardinality of the latent space.

Approach 1: Bayes factors.
Suppose θk represents the parameters present in Model Mk, and that {p(Mk)}
are a set of prior probabilities over the set of possible models. Then the ratio of
posterior probabilities for two competing models Mk and Mk′ is given by

p(Mk|Dy)
p(Mk′ |Dy)

=
f(Dy|Mk)
f(Dy|Mk′)

× p(Mk)
p(Mk′)

,

where the first ratio on the right-hand side is the Bayes factor, and

f(Dy|Mk) =
∫

f(Dy|θk)dθk,

in which θk are the parameters corresponding to model Mk. A ‘first-choice’ model
would be one for which the posterior probability p(Mk|Dy) is maximum. Clearly
the calculation of the Bayes factor is complicated in incomplete-data scenarios.
For an authoritative account of Bayes factors see [46].

Approach 2: The Deviance Information Criterion.
This can be described as a Bayesian version of AIC. First we define ‘Deviance’
by

Δ(θ) = −2 log {f(Dy|θ},
and define

Δ(θ) = Ep(θ|Dy)Δ(θ)

θ̄ = Ep(θ|Dy)θ

pΔ = Δ(θ)−Δ(θ̄).

Then DIC is defined by
DIC = Δ(θ) + pΔ,
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clearly to be minimised if model selection is the aim. The method was introduced
and implemented in a variety of contexts, mainly involving complete data from
generalised linear models, in [47]. A number of somewhat ad hoc adaptations for
incomplete-data contexts were proposed and compared, in particular in mixture
models, in [48], and C.A. McGrory’s Thesis [38] will report on the application of
variational approximations in the context of DIC, using mixture models, hidden
Markov chains and hidden Markov random fields as testbeds.

Approach 3 : Generation of {p(k|Dy)}.
As remarked when we were discussing Bayes factors, ‘exact’ computation of
{p(k|Dy)} is very difficult in incomplete-data contexts, so instead attempts have
been made to assess it using MCMC. Two strands have been developed.

1. Reversible Jump MCMC [49]. As in ‘ordinary’ MCMC, a Markov chain is
generated that is designed to have, as equilibrium distribution, the poste-
rior distribution of all unknown quantities, including k. Therefore, since the
value of k can change during the procedure, there is the need to jump (re-
versibly) between parameter spaces of different dimensions, and this creates
special problems. (The reversibility property is required in order to guarantee
convergence of the Markov chain Monte Carlo procedure to the desired equi-
librium distribution.) Of the problems covered in the present paper, mixtures
are dealt with in [50], hidden Markov chains in [51], and some comparatively
small-scale spatial problems in [52].

2. Birth and Death MCMC [53]. This can be thought of as a ‘continuous-time’
alternative to reversible jump MCMC. The key feature is the modelling of
the mixture components as a marked birth-and-death process, with com-
ponents being added (birth) of being discarded (death) according to a ran-
dom process, with ‘marks’ represented by the parameters of the component
distributions.

Cappé et al. [54] showed that the two approaches could be linked and generalised.
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Abstract. Dimensionality reduction is a commonly used step in ma-
chine learning, especially when dealing with a high dimensional space
of features. The original feature space is mapped onto a new, reduced
dimensionally space. The dimensionality reduction is usually performed
either by selecting a subset of the original dimensions or/and by con-
structing new dimensions. This paper deals with feature subset selection
for dimensionality reduction in machine learning. We provide a brief
overview of the feature subset selection techniques that are commonly
used in machine learning. Detailed description is provided for feature sub-
set selection as commonly used on text data. For illustration, we show
performance of several methods on document categorization of real-world
data.

1 Introduction

Machine learning can be used on different tasks that are often characterized by
a high dimensional space of features [41]. Moreover, features used to describe
learning examples are not necessarily all relevant and beneficial for the induc-
tive learning task. Additionally, a high number of features may slow down the
induction process while giving similar results as obtained with a much smaller
feature subset. We can say that the main reasons for using dimensionality reduc-
tion in machine learning are: to improve the prediction performance, to improve
learning efficiency, to provide faster predictors possibly requesting less informa-
tion on the original data, to reduce complexity of the learned results and enable
better understanding of the underlying process.

The original feature space is mapped onto a new, reduced dimensionality
space and the original examples are then represented in the new space. The
mapping is usually performed either by selecting a subset of the original fea-
tures or/and by constructing new features [25]. Dimensionality reduction by
selecting a subset of features does not involve any feature transformation, but
rather concentrates on selecting features among the existing features. Dimension-
ality reduction by constructing new features can be performed by applying some
methods from statistics that construct new features to be used instead of the
original features (such as, principal components analysis or factor analysis [39])
or by using some background knowledge [20] for constructing new features usu-
ally to be used in addition to the original features. The background knowledge
can be either general (such as, explicit functions calculating the value of new
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features based on the original features eg., sum of two features) or domain spe-
cific (such as, using user provided domain-specific functions for combining the
original features into a new feature, using a language parser on text data to
extract new features from text eg. noun phrases, using clustering of words on
text data, see Section 3.1). Feature construction that adds new features can be
followed by feature subset selection (the original feature set is first extended by
the constructed features and then a subset of features is selected).

This paper focuses on dimensionality reduction using feature subset selec-
tion. We illustrate the effect of using different feature subset selection methods
on the problem of text classification. We found feature selection in text classi-
fication [36, 45] especially interesting, as the number of features usually greatly
exceeds the number of training documents (all the words occurring in the train-
ing documents are commonly used as features). Another common observation
on text classification tasks is the high imbalance of the class distribution [46]
with very few examples from the class of interest (eg., documents matching the
user interest). We will see that there are feature selection methods that treat
the class of interest differently from the other classes.

The rest of this paper is organised as follows: Section 2 gives a brief overview
of the feature subset selection approaches commonly used in machine learning.
Feature subset selection used on text data is described is details in Section 3.
Section 4 illustrates the influence of feature subset selection to the system per-
formance on document categorization. The presented feature selection methods
are discussed in Section 5.

2 Feature Subset Selection in Machine Learning

The problem of selecting subset of the original features can be seen as an opti-
mizations problem. The whole search space for optimization contains all possible
subsets of features, meaning that its size is

∑D
k=0

(
D
k

)
= (1+1)D = 2D, where D

is the dimensionality (the number of features) and k is the size of the current fea-
ture subset. Different methods have been developed and used for feature subset
selection in statistics, pattern recognition and machine learning, using different
search strategies and evaluation functions. In machine learning, the following
search strategies are commonly used for selecting a feature subset.

Forward selection — start with an empty set and greedily add features one
at a time.

Backward elimination — start with a feature set containing all features and
greedily remove features one at a time.

Forward stepwise selection — start with an empty set and greedily add or
remove features one at a time.

Backward stepwise elimination — start with a feature set containing all
features and greedily add or remove features one at a time.

Random mutation — start with a feature set containing randomly selected
features, add or remove randomly selected feature one at a time and stop
after a given number of iterations.
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According to the literature, the approaches to feature subset selection can
be divided into filters, wrappers and embedded approaches [25]. Filters perform
feature subset selection based on some evaluation function that is independent
of the learning algorithm that will be used later. Wrappers use the same ma-
chine learning algorithm that will be used later for modeling as a black-box for
evaluating the feature subsets. Embedded approaches perform feature selection
during the model generation (eg., decision trees), as opposite to the previous
two approaches that perform it in a pre-processing phase. The Simple filtering
approach is based on the filters, but it assumes the feature independence. It is
used when dealing with very large number of features, such as in text data. In
this way the solution quality is traded for the time needed to find the solution,
justified by the large number of features.

2.1 Filtering Approach

In the filtering approach illustrated in Figure 1, a feature subset is selected
independently of the learning method that will be applied on the examples
represented using the selected feature subset. Here we briefly describe several
feature subset selection algorithms used in machine learning that are based on
the filtering approach.

Koller and Sahami [32] proposed an algorithm for feature subset selection
that uses backward elimination to eliminate predefined number of features. The

Fig. 1. Illustration of the filtering approach to feature subset selection. The evaluation
function does not include characteristics of the machine learning algorithm that will
use the selected features.
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idea is to select a subset of features that keeps the class probability distribu-
tion as close as possible to the original distribution that is obtained using all
the features. The algorithm starts with all the features and performs backward
elimination to eliminate a predefined number of features. The evaluation func-
tion selects the next feature to be deleted based on the Cross entropy measure
(see Section 3.1). For each feature the algorithm finds a subset of K features
such that, the feature is approximated to be conditionally independent of the
remaining features. Setting K = 0 results in a much faster algorithm that is
equal to a simple filtering approach commonly used on text-data (see Section 3).

In the Relief algorithm [31] the main idea is to estimate quality of the fea-
tures according to how well their values distinguish between examples that are
similar. The feature score is calculated from a randomly selected subset of train-
ing examples, so that each example is used to calculate the difference in the
distance from the nearest example of the same class and the nearest example of
the different class. The nearest instances are found using the k-Nearest Neigh-
bor algorithm. Some theoretical and empirical analysis of the algorithm and its
extensions is provided in [55].

Almallim and Dietterich [3] developed several feature subset selection algo-
rithms including a simple exhaustive search and algorithms that use different
heuristics. They based their feature subset evaluation function on conflicts in
class value occurring when two examples have the same values for all the se-
lected features. In the first version of the feature subset selection algorithm
called FOCUS, all the feature subsets of increasing size are evaluated until a
sufficient subset is encountered. Feature subset Q is said to be sufficient if there
are no conflicts. In other words, if there is no pair of examples that have dif-
ferent class values and the same values for all the features in Q. The succes-
sor of that algorithm FOCUS-2 prunes the search space, thus evaluating only
promising subsets. Both algorithms assume the existence of a small set of fea-
tures that form a solution and their usage on domains with a large number of
features can be computationally infeasible. This is the reason why search heuris-
tics are used in the next versions of the algorithm resulting in good but not
necessarily optimal solutions. The idea is to use forward selection until a suf-
ficient subset is encountered. The proposed heuristic algorithms differ in the
evaluation function they use. One of the heuristic algorithms uses conditional
class entropy of training examples when positioned into 2|Q| groups such that
the examples in each group have the same truth assignment to the features in
Q. Entropy(Q) = −

∑2|Q|−1
k=0 P (Groupk)

∑
i P (Ci|Groupk) log2 P (Ci|Groupk),

where Q is the current feature subset we are evaluating, P (Groupk) is the prob-
ability of the k-th group of examples containing training examples that all have
the same truth assignment to the features in Q, P (Ci|Groupk) is the conditional
probability of the i-th class value given the k-th group of examples. The search
stops when the previously described class entropy equals 0. The other two heuris-
tic algorithms they developed are based on the number of conflicts caused by
representing examples using only selected features. The search stops when there
are no conflicts (the sufficient feature subset is encountered).
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Liu and Setiono [38] used random sampling to search the space of all pos-
sible feature subsets. The predetermined number of subsets is evaluated and
the smallest having an inconsistency rate below the given threshold is selected.
They define inconsistency rate as the average difference between the number of
examples with the same values of all the selected features and the number
of examples among them having the same, most frequent class value among
these examples. Noise handling is enabled by setting the threshold to some pos-
itive value. If the threshold is set to 0, the evaluation is based on consistency
check as used in the already described algorithm FOCUS [3].

Pfahringer [51] proposed using Minimum Description Length as an evaluation
function of feature subset. In order to calculate Minimum Description Length
of a feature subset, training examples are represented with a simple decision
table that contains only features from the subset. He used a search that adds or
removes features one at a time. The search starts with the randomly selected
feature subset found to be the best among a fixed number of randomly selected
feature subsets. He reported that the method performs at least as well as the
wrapper approach applied on the simple decision tables and scales up better to
a large number of training examples and features.

2.2 Wrapper Approach

The idea of the wrapper approach is to select a feature subset using the evalu-
ation function based on the same learning algorithm that will be used later for
learning [29] (see Figure 2 for illustration). Instead of using subset sufficiency,
entropy or some other explicitly defined evaluation function, a kind of ‘black
box’ function is used to guide the search. Namely, the evaluation function for
each candidate feature subset returns the estimated quality of the model in-
duced by the target learning algorithm using the feature subset. The idea is
similar to automated model selection, where pruning parameters for decision
tree induction are set by an optimization algorithm [42], [43]. This can result
in a rather time consuming process, since for each candidate feature subset
that is evaluated during the search, the target learning algorithm is usually
applied several times (eg. 10 in case of using 10-fold cross validation for esti-
mating the model quality). Here we briefly describe several feature subset selec-
tion algorithms developed in machine learning that are based on the wrapper
approach.

Aha and Bankert [2] used a wrapper approach for feature subset selection
in instance-based learning. They proposed a new search strategy that performs
beam search using a kind of backward elimination. Namely, instead of starting
with an empty feature subset, their search randomly selects a fixed number of
feature subsets and starts with the best among them. Skalak [58] used a wrapper
approach for feature subset selection and for selecting a subset of examples to
be stored in instance-based learning. Instead of the deterministic search strategy
used in [2] they used random mutation.

Caruana and Freitag [13] developed a wrapper for feature subset selection
method for decision tree induction. They proposed a new search strategy that
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Fig. 2. Illustration of the wrapper approach to feature subset selection. The evaluation
function is based on the same machine learning algorithm that will be used on the
selected feature subset.

uses adding and removing features (backward stepwise elimination) and addi-
tionally at each step removes all the features that were not used in the decision
tree induced for the evaluation of the current feature subset. Bala et al. [5] and
Cherkauer and Shavlik [16] also used a wrapper approach for feature subset selec-
tion for decision tree induction but their method uses a genetic algorithm to per-
form the search. John et al. [29] defined the notion of strong and weak relevance of
a feature and used a wrapper feature subset selection for decision tree induction.

Vafaie and De Jong [59] used a kind of wrapper approach where instead of us-
ing the same machine learning algorithm (AQ15 in this case) for evaluation and
learning, the evaluation is performed using approximation of the model quality
estimated by machine learning algorithm that selects feature subset which max-
imally separates classes using Euclidean distance. Their method uses a genetic
algorithm to perform the search.

Feature subset selection can be performed using metric-based method for
model selection. As in the above described wrapper approach, the feature subset
is evaluated by applying some machine learning algorithm on the data repre-
sented only by the feature subset. However, in metric-based model selection the
algorithm used for evaluation does not need to be the same as the algorithm to
be used later on the feature subset. Also the data set used for comparing the
two feature subsets can be unlabeled. The thesis is that models that overfit the
data are likely to behave differently on training data than on the other data.
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The feature subset is evaluated by inducing a model on the data represented by
the feature subset and comparing the model classification output on the train-
ing data and on the unlabeled data. The feature subset is evaluated relative to
the currently best feature subset by comparing the classification output of the
two models (eg., average difference in the prediction of the first model from the
prediction of the second model).

An extension of the wrapper approach to feature subset selection has been
proposed [9] that combines the metric-based model selection and the cross-
validation model selection. The combination is based on the level of their dis-
agreement on testing examples, so that the higher disagreement means the lower
trust to the cross-validation model. The intuition behind is that cross-validation
mainly provides good results but has high variance and should benefit from a
combination with some other model selection approach with lower variance.

2.3 Embedded Approach

In the embedded approach to feature selection, the feature selection and learn-
ing are interleaved (see Figure 3). A well known example is decision tree induc-
tion [52], where a simplified filtering approach assuming feature independence is
used to find the best feature for splitting the data into subsets. The procedure
is repeated recursively on the subsets until some stopping criterion is satisfied.
The output is a model that uses only a subset of features (those that appear in
the nodes of decision tree). Notice that the embedded approach assumes that
our learning algorithm already has feature selection interleaved with learning.

Fig. 3. Illustration of the embedded approach to feature subset selection. Feature se-
lection is an integral part of the machine learning algorithm that is use for model
generation.
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Feature selection that is an integral part of the model generation as proposed
in [50] uses a fast gradient-based heuristic to find the most promising feature for
improving the existing model at each iteration step of the incremental optimiza-
tion of the model.

Embedded feature selection based on training a non-linear SVM is proposed
in [53]. The features are selected using backward elimination based on the criteria
derived from generalization error bounds of the SVM theory: the weight vector
norm or alternatively using upper bounds of the leave-one-out error. The idea
behind the approach is that features that are relevant to the concept should
affect the generalization error bound more than irrelevant features.

The embedded approach to feature subset selection can be used as a part of a
filtering approach. This can be useful if we want to use a learning algorithm that
does not have feature selection embedded (as proposed for the Nearest Neighbor
algorithm in [12]) or we run the algorithm with embedded feature selection on a
data sample and re-run it on the complete dataset but with the reduced feature
set (as proposed for text data in [11]). Namely, instead of using the model that
has embedded feature selection, only the features that appear in the model are
taken to form the selected feature subset. An example is the algorithm proposed
in [12] that uses decision tree induction for feature subset selection. The idea is
that only the features that appear in the induced decision tree are selected for
learning using Nearest Neighbor algorithm. In this algorithm the optimization
process is based on a feature selection measure (in this case information gain
ratio) that is used in the greedy search to induce decision tree.

2.4 Discussion

Feature subset selection can be enhanced to provide additional information to
system by introducing a mapping from the selected features to the discarded fea-
tures in the multitask learning setting [14]. Experiments on synthetic regression
and classification problems and real-world medical data have shown improve-
ments in the system performance. Namely, the features that harm performance
if used as inputs were found to improve performance if used as an additional
output. The idea is that transfer of information is occurring inside the model,
when in addition to the original output it models also that additional output
consisting of the discarded features.

Multitask learning was used for SVM [27], where the kernel and learning
parameters were shared between different tasks (SVM models). The method is
applicable when several classification tasks with differently labeled data set share
common input space.

3 Feature Selection on Text Data

Most of the feature subset selection approaches used in machine learning are
not designed for the situations with a large number of features. The usual way
of learning on text defines a feature for each word that occurs in the training
documents. This can easily result in several tens of thousands of features. Most
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Fig. 4. Illustration of the approach to feature subset selection commonly used on text
data. Each feature is scored independently of other features. Features are sorted ac-
cording to their score and the first k features are selected to form the solution feature
subset.

methods for feature subset selection that are used on text are very simple com-
pared to the described methods developed in machine learning. Basically, some
evaluation function that is applied to a single feature is used as described in
Section 3.1. All the features are independently evaluated, a score is assigned to
each of them and the features are sorted according to the assigned score. Then,
a predefined number of the best features is taken to form the final feature subset
(see Figure 4).

3.1 Feature Scoring in Text Domains

Scoring of individual features is usually performed in a supervised way, for in-
stance, measuring mutual information between the feature and the class. How-
ever, there are some feature scoring measure that ignore the class information,
such as scoring by the number of documents that contain a particular word.

Different scoring measures have been proposed on text data. Information
gain used in decision tree induction [52] was reported to work well as feature
scoring measure on text data [60] in some domains (Reuters-22173, a subset of
MEDLINE) where a multiclass problem was addressed using k-Neareast Neigh-
bor algorithm; while in others using Naive Bayesian classifier on a binary clas-
sification problem (sub domains of Yahoo!) it almost completely failed [47].
This difference in performance can be partially attributed to the classification
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algorithm and domain characteristics. In the domains having unbalanced class
distribution, most of the features highly scored by Information gain will be repre-
sentative of the majority class value, as the measure is symmetric in class values
and in feature values (see the formula below). In binary classification problems
with highly unbalanced class distribution, the Naive Bayesian classifier needs
some evidence (features) of the minority class value unless it will by default
classifying all the documents to the majority class value.

It is interesting to notice that Information gain takes into account all
values for each feature (in the case of text classification two values: occurs
or does not occur in a document), as opposite to the most other, more suc-
cessful, feature scoring measures used on text that count only the feature oc-
currences. Expected cross entropy as used on text data ([33], [47]) is similar
to Information gain, but instead of calculating the average over all the pos-
sible feature values, only the value denoting that the feature occurred in a
document is used. Experiments on document categorization into a hierarchi-
cal topic taxonomy [47] have show that this significantly improves the per-
formance. Expected cross entropy is related to Information gain as follows:
InfGain(F ) = CrossEntropyTxt(F )+CrossEntropyTxt(F ), where F is a bi-
nary feature (usually representing a word’s occurrence). Cross entropy for text,
Frequency, Mutual information are measures that were reported to work well
on text data [60].

Odds ratio was reported to outperform many other measures [47] in combi-
nation with Naive Bayes used for document categorization on data with highly
imbalanced class distribution. A characteristic of Naive Bayes used for text clas-
sification is that, once the model has been generated, the classification is based
on the features that occur in a document to be classified. This means that an
empty document will be classified into the majority class. Consequently, having
a highly imbalanced class distribution, if we want to identify documents from the
under-represented class value we need to have a model sensitive to the features
that occur in such documents. If most of the selected features are representative
for the majority class value, the documents from other classes will be almost
empty (represented using only the selected features).

Experimental comparison of different feature selection measures in combi-
nation with the Support Vector Machine classification algorithm (SVM) on a
Reuters-2000 data set [11] has shown that using all or almost all the features
yields the best performance. The same finding was confirmed in experimental
evaluation of different feature selection measures on a number of text classifi-
cation problems [22]. In addition, in [22] a new feature selection measure was
introduced Bi − NormalSeparation that was reported to improve the perfor-
mance of SVM especially on the problems where the class distribution is highly
imbalanced. Interestingly, they also report that Information gain is outperform-
ing the other tested measures in the situation when using only a small number
of selected features (20-50 features).

Another feature selection method for text data called Fisher index was
proposed as a part of document retrieval system based on organizing large text
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databases into hierarchical topic taxonomies [15]. Similar to [45], for each internal
node in the topic taxonomy a separate feature subset is calculated and used to
build a Naive Bayesian classifier for that node. In that way, the feature set used
in the classification of each node is relatively small and is changed with context.
In contrast to the work reported in [45, 47], and similar to the work of [33], a
multilevel classifier is designed and used to classify a document to a leaf node.
Namely, a new document is classified from the top of the taxonomy and based
on the classification outcome in the inner nodes, proceeds down the taxonomy.

What follows are formulas of the described scoring measures.

InfGain(F ) = P (F )
∑

i

P (Ci|F ) log
P (Ci|F )
P (Ci)

+ P (F )
∑

i

P (Ci|F ) log
P (Ci|F )
P (Ci)

CrossEntropyTxt(F ) = P (F )
∑

i

P (Ci|F ) log
P (Ci|F )
P (Ci)

MutualInfoTxt(F ) =
∑

i

P (Ci) log
P (F |Ci)
P (F )

Freq(F ) = TF (F )

OddsRatio(F ) = log
P (F |pos)(1 − P (F |neg))
(1− P (F |pos))P (F |neg)

Bi−NormalSeparation(F ) = Z−1(P (F |pos)) − Z−1(P (F |neg))

FisherIndexTxt(F ) =

∑
pos,neg (P (F |pos)− P (F |neg))2∑

Ci∈pos,neg
1

|Ci|
∑

d∈Ci
(n(F, d) − P (F |Ci))2

Where P (F ) is the probability that feature F occurred, F means that the fea-
ture does not occur, P (Ci) in the probability of the i-th class value, P (Ci|F ) is
the conditional probability of the i-th class value given that feature F occurred,
P (F |Ci) is the conditional probability of feature occurrence given the i-th class
value, P (F |pos) is the conditional probability of feature F occurring given the
class value ‘positive’, P (F |neg) is the conditional probability of feature F oc-
curring given the class value ‘negative’, TF (F ) is term frequency (the number
of times feature F occurred ), Z−1(x) is the standard Normal distribution’s in-
verse cumulative probability function (z-score), |Ci| is the number of documents
in class Ci and n(F, d) is 1 if the document d contains feature F and 0 otherwise.

As already highlighted in text classification most of the feature selection
methods evaluate each feature independently. A more sophisticated approach is
proposed in [11] where a linear SVM is first trained using all the features and
then, the induced model is used to score the features (weight assigned to each
feature in the normal to the induced hyper plane is used as a feature score).
Experimental evaluation using that feature selection in combination with SVM,
Perceptron and Naive Bayes has shown that the best performance is achieved
by SVM when using almost all the features. The experiments have confirmed
the previous findings [46] on feature subset selection improving the performance
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of Naive Bayes, but the overall performance is lower than using SVM on all the
features. Similar as in [11], feature selection was performed using a linear SVM
to rank the features in [8]. However, the experiments in [8] were performed on
a regression problem and the final model was induced using a nonlinear SVM.
The feature selection was shown to improve the performance.

Distributional clustering of words with an agglomerative approach (words
are viewed as distributions over document categories) is used for dimensionality
reduction via feature construction [10] that preserves the mutual information
between the features as much as possible. This representation was shown to
achieve comparable or better results than the bag-of-words document represen-
tation using feature selection based on Mutual Information for Text; a linear
SVM was used as the classifier. Related approach also based on preserving the
mutual information between the features [24] finds new dimensions by using an
iterative projection algorithm instead of clustering. It was shown to achieve per-
formance comparable to the bag-of-words representation with all the original
features, using significantly less features (eg., on one dataset four constructed
features achieved 98% of performance of 500 original features) using the linear
SVM classifier.

Divisive clustering for feature construction [18] was shown to outperform dis-
tributional clustering when used for dimensionality reduction on text data. The
approach uses Kullback-Leibler divergence as a distance function and minimizes
within-cluster divergence while maximizing between-cluster divergence. Exper-
iments on two datasets have shown that this dimensionality reduction slightly
improves the performance of Naive Bayes (compared to using all the original
features), outperforming the agglomerative clustering of words combined with
Naive Bayes and achieving considerably higher classification accuracy for the
same number of features than feature subset selection using Information Gain
or Mutual Information (in combination with Naive Bayes or SVM).

4 Illustration of Feature Selection Influence to
Performance

We now illustrate the feature selection influence on the performance of document
categorization into a hierarchy of Web documents. The experimental results re-
port the influence of using different sizes of the feature subset and different scor-
ing measures. The results of the experiments are summarized based on the work
reported in [47]. Briefly, the experiments are performed so that the documents
are represented as feature-vectors with features being sequences of n consecutive
words (n-grams). A separate classifier for each of the hierarchy nodes is induced
using a Naive Bayesian classifier on text data in a similar way as described in
[28], [41] or [44]. A set of positive and negative examples is constructed for each
hierarchy node based on the examples in the node and weighted examples from
its sub-nodes. The formula used to predict probability of class value C for a given
document Doc is the following: P (C|Doc) = P (C)ΠjP (Fj |C)TF (Fj,Doc)

i P (Ci)ΠlP (Fl|Ci)T F (Fl,Doc) , where
the product goes over all the features used in the representation of documents
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(in our case all selected features), P (C) is the probability of class value C,
P (Fj |C) is the conditional probability that feature Fj occurs in a document given
the class value C calculated using Laplace probability estimate. TF (Fj, Doc) is
the frequency of feature Fj in document Doc. Since TF (Fj, Doc) = 0 for all
the words that are not contained in document Doc, the predicted class proba-
bility can be calculated by taking into account only words (in our case selected
features) contained in document Doc as follows:

P (C|Doc) =
P (C)ΠF∈DocP (F |C)TF (F,Doc)∑

i P (Ci)ΠFl∈DocP (Fl|Ci)TF (Fl,Doc) (1)

4.1 Experimental Results

Results of 5-fold cross validation are evaluated using standard document clas-
sification measures, precision and recall and reported in Table 1. Precision is

Table 1. Comparison of different feature selection measures for document categoriza-
tion on domains formed from Yahoo! hierarchy based on [47]. We observe performance
(F2-measure) for the best performing number of features. Additionally, we give val-
ues of Precision and Recall. Feature scoring measures are sorted according to their
performance in F2-measure. Report are the average values and standard errors.

Domain Scoring measure Average on category prediction
name F2-measure Precision Recall
Ent. Odds ratio 0.30 ± 0.003 0.41 ± 0.004 0.34 ± 0.003

Term frequency 0.27 ± 0.003 0.38 ± 0.003 0.34 ± 0.003
Mutual info. for text 0.23 ± 0.004 0.57 ± 0.006 0.29 ± 0.007

Information gain 0.20 ± 0.003 0.87 ± 0.002 0.17 ± 0.002
Cross entropy for text 0.18 ± 0.002 0.29 ± 0.005 0.28 ± 0.005

Random 0.001± 0.0002 0.99 ± 0.007 0.001±0.0002
Arts. Odds ratio 0.32 ± 0.004 0.36 ± 0.005 0.38 ± 0.004

Term frequency 0.29 ± 0.003 0.43 ± 0.004 0.34 ± 0.003
Mutual info. for text 0.25 ± 0.005 0.56 ± 0.006 0.31 ± 0.007

Cross entropy for text 0.22 ± 0.003 0.27 ± 0.005 0.32 ± 0.006
Information gain 0.17 ± 0.002 0.93 ± 0.003 0.15 ± 0.002

Random 0.001± 0.0003 0.99 ± 0.006 0.001±0.0002
Comp. Odds ratio 0.33 ± 0.002 0.36 ± 0.009 0.57 ± 0.005

Term frequency 0.26 ± 0.002 0.45 ± 0.003 0.27 ± 0.003
Mutual info. for text 0.24 ± 0.004 0.60 ± 0.006 0.26 ± 0.006

Cross entropy for text 0.21 ± 0.004 0.28 ± 0.004 0.27 ± 0.002
Information gain 0.14 ± 0.006 0.94 ± 0.004 0.12 ± 0.005

Random 0.001± 0.0002 0.99 ± 0.001 0.001± 0.0002
Ref. Odds ratio 0.42 ± 0.009 0.46 ± 0.009 0.51 ± 0.012

Mutual info. for text 0.32 ± 0.005 0.69 ± 0.015 0.32 ± 0.006
Term frequency 0.26 ± 0.070 0.72 ± 0.007 0.26 ± 0.007

Cross entropy for text 0.22 ± 0.005 0.50 ± 0.003 0.23 ± 0.005
Information gain 0.16 ± 0.002 0.99 ± 0.002 0.14 ± 0.002

Random 0.04 ± 0.005 0.99 ± 0.001 0.04 ± 0.004
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defined as the proportion of correctly classified examples in the set of all the
examples that are assigned the target class value (similar to classification ac-
curacy measured for one class value), while recall is defined as the proportion
of correctly classified examples out of all the examples having the target class
value. Precision and recall are complementary and should be maximized. We
also report a value of F −measure that is a combination of Precision and Recall
commonly used in information retrieval, where the relative importance of each
is expressed with the value of parameter β. Fβ = (1+β2)Precision×Recall

β2Precision+Recall .
We also report on the influence of the number of selected features, as the

reported experiments were performed for different values of the predefined num-
ber of features to be selected. Influence of the feature subset size can be seen
from the performance graphs in Figure 5. It is evident that in the reported ex-
periments reducing the feature subset improves the overall performance of the
system.

It can be seen that Odds ratio is among the best performing measures, while
Information gain is one of the worst performing measures together with Random
scoring. Except Random scoring, all other measures achieve the best results for
vector size around 1, meaning that the feature subset is approximately of the
size of positive documents’ vocabulary.
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Fig. 5. Comparison of F-measure values for different feature scoring measures on do-
main ‘Reference’ defined from the Yahoo hierarchy. The problem is assignment of doc-
ument into a node of the existing document hierarchy. Given results are for pruning
setting = (0.7, 3) and probability threshold 0.95. We give mean and standard error of
F2-measure.
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5 Discussion

The paper provides an overview of dimensionality reduction by feature subset
selection techniques that are commonly used in machine learning. We can say
that the main reasons for using dimensionality reduction in machine learning are:
to improve the prediction performance, to improve learning efficiency, to provide
faster predictors possibly requesting less information on the original data, to
reduce complexity of the learned results and enable better understanding of the
underlying process.

Dimensionality reduction in machine learning is performed usually either by
feature selection or feature construction. Selecting a subset of features does not
involve any feature transformation, but rather concentrates on selecting features
among the existing features. Constructing new features can be performed by
applying some methods from statistics that construct new features to be used
instead of the original features or by using some background knowledge for con-
structing new features usually to be used in addition to the original features.
Actually, feature construction that adds new features can be followed by feature
subset selection. The approaches to feature subset selection can be divided into
filters, wrappers and embedded approaches [25]. Filters perform feature subset
selection based on some evaluation function that is independent of the learning
algorithm that will be used later. Wrappers use the same machine learning al-
gorithm that will be used later for modeling as a black-box for evaluating the
feature subsets. Embedded approaches perform feature selection during the model
generation, as opposite to the previous two approaches that perform feature se-
lection as pre-processing.

We illustrate the effect of using different feature subset selection methods on
the problem of text classification. A variant of the filtering approach assuming
feature independence, Simple filtering approach, is commonly used when deal-
ing with very large number of features, such as in text data. We found feature
selection in text classification especially interesting, as the number of features
usually greatly exceeds the number of training documents. Another common
observation on text classification tasks is the high imbalance of the class dis-
tribution with very few positive examples. For illustration, real-world data is
used to show performance of several feature selection methods on the problem
of document categorization. It can be seen that the performance of some classi-
fication algorithms, such as Naive Bayes, greatly depends on the selected feature
subset. On the other hand, there are algorithms, such as SVM, that have rather
stable performance if the feature subset is sufficiently large (eg., containing 50%
of the original features). In that light, one should be aware of the algorithm’s
sensitivity to the feature set prior to applying any feature subset selection. It
was also found that some datasets are more sensitive to feature subset selection
than others. Our hope is that this paper contributes by giving an overview of
the approaches and illustrating potential influence of the feature subset selection
on the classification performance.
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48. Mladenić, D., & Grobelnik, M. (2004). Mapping documents onto web page ontology.
In: Web mining : from web to semantic web (Berendt, B., Hotho, A., Mladenic, D.,
Someren, M.W. Van, Spiliopoulou, M., Stumme, G., eds.), Lecture notes in artificial
inteligence, Lecture notes in computer science, vol. 3209, Berlin; Heidelberg; New
York: Springer, 2004, 77-96.

49. Pazzani, M., & Billsus, D. (1997). Learning and Revising User Profiles: The Iden-
tification of Interesting Web Sites. Machine Learning, 27, 313-331.

50. Perkins, S., Lacker, K., Theiler, J. (2003). Grafting: Fast, Incremental Feature
Selection by Gradient Descent in Function Space. Journal of Machine Learning
Research, 3, 1333-1356.

51. Pfahringer, B. (1995). Compression-Based Feature Subset Selection. In P. Turney
(Ed.), Proceedings of the IJCAI-95 Workshop on Data Engineering for Inductive
Learning, Workshop Program Working Notes, Montreal, Canada, 1995.

52. Quinlan, J.R. (1993). Constructing Decision Tree. In C4.5: Programs for Machine
Learning. Morgan Kaufman Publishers.

53. Rakotomamonjy, A. (2003). Variable Selection Using SVM-based Criteria Journal
of Machine Learning Research, 3, 1357-1370

54. van Rijsbergen, C.J,. Harper, D.J., & Porter, M.F. (1981). The selection of good
search terms. Information Processing & Management, 17, 77-91.

55. Robnik-Sikonja, M., Kononenko, I. (2003). Theoretical and Empirical Analysis of
ReliefF and RReliefF. Machine Learning, 53, 23-69, Kluwer Academic Publishers.

56. Shapiro, A. (1987). Structured induction in expert systems. Addison-Wesley.



102 D. Mladenić
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Abstract. Mutual Information (MI) is a long studied measure of in-
formation content, and many attempts to apply it to feature extrac-
tion and stochastic coding have been made. However, in general MI is
computationally intractable to evaluate, and most previous studies re-
define the criterion in forms of approximations. Recently we described
properties of a simple lower bound on MI, and discussed its links to
some of the popular dimensionality reduction techniques [1]. Here we
introduce a richer family of auxiliary variational bounds on MI, which
generalizes our previous approximations. Our specific focus then is on
applying the bound to extracting informative lower-dimensional projec-
tions in the presence of irreducible Gaussian noise. We show that our
method produces significantly tighter bounds than the well-known as-if
Gaussian approximations of MI. We also show that the auxiliary variable
method may help to significantly improve on reconstructions from noisy
lower-dimensional projections.

1 Introduction

One of the principal goals of dimensionality reduction is to produce a lower-
dimensional representation y of a high-dimensional source vector x, so that the
useful information contained in the source data is not lost. If it is not known a
priori which coordinates of x may be relevant for a specific task, it is sensible
to maximize the amount of information which y contains about all the coordi-
nates, for all possible x’s. The fundamental measure in this context is the mutual
information

I(x, y) ≡ H(x)−H(x|y), (1)

which indicates the decrease of uncertainty in x due to the knowledge of y.
Here H(x) ≡ −〈log p(x)〉p(x) and H(x|y) ≡ −〈log p(x|y)〉p(x,y) are marginal and
conditional entropies respectively, and the angled brackets represent averages
over all variables contained within the brackets.

The principled information-theoretic approach to dimensionality reduction
maximizes (1) with respect to parameters of the encoder p(y|x), under the as-
sumption that p(x) is fixed (typically given by the empirical distribution). It is
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Fig. 1. Generative and encoder models. (a): An encoder model MI
def= p̃(x)p(y|x)

trained by maximizing the mutual information I(x, y) (b): a generative model ML
def=

p(y)p(x|y) trained by maximizing the log-likelihood 〈log p(x)〉p̃(x). Here p̃(x) is the em-
pirical distribution, the shaded nodes indicate the hidden representations y, and we
have assumed that the data patterns x are i.i.d.

easy to see that if the reduced dimension |y| (|y| < |x|) is still large, the exact
evaluation of I(x, y) is in general computationally intractable. The key difficulty
lies in the computation of the conditional entropy H(x|y), which is tractable only
in a few special cases. Typically, the standard techniques assume that p(x, y) is
jointly Gaussian (so that I(x, y) has a closed analytical form), or the channels
are deterministic and invertible [2], [3] (which may be related to the noiseless
square ICA case). Alternatively, it is sometimes assumed that the output spaces
are very low-dimensional, so that integration over y in the computation of I(x, y)
may be performed numerically). Clearly, these assumptions may be too restric-
tive for many subspace selection applications. Other existing methods suggest
to optimize alternative objective functions (e.g. approximations of I(x, y) based
on the Fisher Information criterion [4]), which, however, do not retain proper
bounds on I(x, y) and may often lead to numerical instabilities when applied to
learning undercomplete representations [5].

1.1 Encoder vs Generative Models

A principal motivation for applying information theoretic techniques for sto-
chastic subspace selection and dimensionality reduction is the general intuition
that the unknown compressed representations should be predictive about the
higher-dimensional data. Additionally, we note that the information-maximizing
framework of encoder models is particularly convenient for addressing problems
of constrained dimensionality reduction [6], as by parameterizing p(y|x) we may
easily impose explicit constraints on the projection to a lower-dimensional space
(see Fig. 1 (a)). This is in contrast to generative latent variable models (Fig.
1 (b)) commonly used for probabilistic dimensionality reduction (e.g. [7], [8]),
where the probabilistic projection to the latent space p(y|x) ∝ p(y)p(x|y) is a
functional of the explicitly parameterized prior p(y) and the generating condi-
tional p(x|y). Effectively, our parameterization of the encoder model is analogous
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to that of a conditionally trained discriminative model; however, in contrast to
discriminative models, the lower-dimensional vectors y will in our case be hidden.
Finally, we note that training encoder models by optimizing the likelihood would
be meaningless, since the unknown representations y would marginalize out. On
the other hand, training such models by maximizing the mutual information (1)
will generally require approximations.

1.2 Linsker’s as-if Gaussian Approximation

One way to tractably approximate I(x, y) is by using the as-if Gaussian approx-
imation of the joint encoder model MI

def= p(x)p(y|x) ≈ pG(x, y) ∼ N (μ, Σ) [9].
The conditional entropy H(x|y) may in this case be approximated by

HG(x|y) def= −〈log pG(x|y)〉pG(x,y) = (1/2) log(2πe)|x||Σx|y|, (2)

where Σx|y is the covariance of the Gaussian decoder pG(x|y) expressed from
pG(x, y). The as-if Gaussian approximation of I(x, y) is given by

IG(x, y) ∝ log |Σxx| − log |Σxx −ΣxyΣ−1
yy ΣT

xy|, (3)

where Σxx, Σxy, and Σyy are the partitions of Σ
def= 〈[x y][x y]T 〉p(y|x)p̃(x) −

〈[x y]〉p(y|x)p̃(x)〈[x y]T 〉p(y|x)p̃(x), and we have assumed that p(x) ≡ p̃(x) is the
empirical distribution. Objective (3) needs to be maximized with respect to
parameters of the encoder distribution p(y|x). After training, the encoder may
be used for generating lower-dimensional representations y for a given source x
(note that the inference is usually much simpler than that in generative models).

2 A Simple Variational Lower Bound on I(x, y)

In [1] we discussed properties of a simple variational lower bound on the mutual
information I(x, y). The bound follows from non-negativity of the Kullback-
Leibler divergence KL(p(x|y)||q(x|y)) between the exact posterior p(x|y) and its
variational approximation q(x|y), leading to

I(x, y) ≥ Ĩ(x, y) def= H(x) + 〈log q(x|y)〉p(x,y) , (4)

where q(x|y) is an arbitrary distribution. Clearly, the bound is saturated for
q(x|y) ≡ p(x|y); however, in general this choice would lead to intractability of
learning the optimal encoder p(y|x).

Objective (4) explicitly includes both the encoder p(y|x) (distribution of the
lower-dimensional representations for a given source) and decoder q(x|y) (recon-
struction of the source from a given compressed representation). It is iteratively
optimized for parameters of both distributions (the IM algorithm [1]), which
is qualitatively similar to the variational expectation-maximizing algorithm for
intractable generative models [10]. (Note, however, that optimization surfaces
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defined by the objectives of the IM and the variational EM are quite differ-
ent [6]). The flexibility in the choice of the decoder q(x|y) makes (4) particularly
computationally convenient. Indeed, we may avoid most of the computational
difficulties of optimizing I(x, y) by constraining q(x|y) to lie in a tractable fam-
ily (for example, q(x|y) may be chosen to have a simple parametric form or a
sparse structure). Such constraints significantly simplify optimization of Ĩ(x, y)
for non-trivial stochastic encoders and provide a variational extension of the
Blahut-Arimoto algorithms [11] for channel capacity1.

It is easy to show that by constraining the decoder as q(x|y) ∼ N (Uy, Σ), op-
timization of the bound (4) reduces to maximization of Linsker’s as-if Gaussian
criterion (3) (see [6] for details). Therefore, maximization of IG may be seen
as a special case of the variational information-maximization approach for the
case when the decoder q(x|y) is a linear Gaussian. Moreover, if for this case
p(y|x) ∼ N

(
W(x − 〈x〉p̃(x)), s2I

)
, it is easy to show that the left singular vectors

of the optimal projection weights WT correspond to the |y|-PCA solution on the
sample covariance 〈xxT 〉p̃(x) − 〈x〉p̃(x)〈x〉Tp̃(x).

3 An Auxiliary Variational Bound

A principal conceptual difficulty of applying the bound (4) is in specifying a pow-
erful yet tractable variational decoder q(x|y). Specifically, for isotropic Gaussian
channels, the linear Gaussian decoders mentioned above are fundamentally lim-
ited to producing PCA projections. Here we describe a richer family of bounds
on I(x, y) which helps to overcome this limitation.

From (4) it is intuitive that we may obtain tighter bounds on I(x, y) by in-
creasing representational power of the variational distributions q(x|y). One way
to achieve this is to consider multi-modal decoders q(x|y) = 〈q(x|y, z)〉q(z|y), where
the introduced auxiliary variables z are effectively the unknown mixture states.
Clearly, this choice of the variational decoder has a structure of a constrained
multi-dimensional mixture-of-experts [14] model of a conditional distribution
(though in our case the lower-dimensional representations y are hidden). The
fully-coupled structure of the resulting variational distribution q(x|y) qualita-
tively agrees with the structure of the exact posterior, as different dimensions of
the reconstructed vectors x are coupled through the auxiliary variables z. More-
over, for any interesting choice of the auxiliary space {z}, the decoder q(x|y) will
typically be multi-modal, which agrees with the generally multi-modal form of
Bayesian decoders p(x|y). We may therefore intuitively hope that this choice of
the variational posterior will generally result in tighter bounds on I(x, y).

A possible disadvantage of mixture decoders q(x|y) relates to the fact that
specifying the conditional mixing coefficients q(z|y) in a principled manner may
be rather difficult. Moreover, if the auxiliary variables z are independent from
1 Standard iterative approaches to maximizing I(x, y) in encoder models require op-

timization of the cross-entropy 〈log p(old)(y)〉p(y) between two mixture distributions
p(y) and p(old)(y) for parameters of the encoder p(y|x) (see [11], [12], [13]), which is
rarely tractable in practice.
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Fig. 2. A stochastic channel p(y|x) with a structured mixture-type decoder q(x|y). (The
states of the reconstructed variables are denoted by x̃). The auxiliary vector z is not
transmitted across the channel p(y|x) and does not explicitly constrain p(x, y). The
dashed lines show the mappings to and from the auxiliary space. The auxiliary node
is shown by the double circle.

the original source patterns x given the lower-dimensional encodings y, any noise
in y will affect determining of the mixing states. Intuitively, this may have an
overwhelmingly negative effect on decoding, causing relaxations in the bound
on I(x, y). We may therefore wish to reduce the effects which the noise of the
stochastic projection p(y|x) has on the specification of the decoder q(x|y). One
way to address this matter is by introducing an additional mapping p(z|x, y) to
the auxiliary variable space, which may be thought of as an additional varia-
tional parameter (see Fig. 2). Indeed, even when the channel is noisy, the con-
ditional dependence of the auxiliary variables z on the unperturbed source pat-
terns could result in an accurate detection of the states of the auxiliary variables.
Note that the auxiliary conditional distribution p(z|x, y) is defined in a way that
does not affect the original noisy channel p(y|x), as the channel would remain
a marginal of the joint distribution of the original sources, codes, and auxiliary
variables

p(x, y, z) = p̃(x)p(y|x)p(z|x, y). (5)

The role of the auxiliary variables z in this context would be to capture global
features of the transmitted sources, and use these features for choosing optimal
decoder experts. Importantly, the auxiliary variables z are not transmitted across
the channel. Their purpose here is to define a richer family of bounds on I(x, y)
which would generalize over objectives with simple constraints on variational
decoders (such as linear Gaussians).

From the definition (5) and the chain rule for mutual information (e.g. [11]),
we may express I(y, x) as

I(y, x) = I({z, y}, x)− I(x, z|y), (6)
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where I({z, y}, x) def= H(x) − H(x|z, y) is the amount of information that the
features z and codes y jointly contain about the sources, and I(x, z|y) def= H(z|y)−
H(z|x, y) is the conditional mutual information. Substituting the definitions into
(6), we obtain a general expression of the mutual information I(x, y) as a function
of conditional entropies of the sources, codes, and auxiliary variables

I(y, x) = H(x) + H(z|x, y)−H(x|y, z) −H(z|y). (7)

Then by analogy with (4) we obtain

I(y, x) ≥ H(x) + H(z|x, y) + 〈log q(x|y, z)〉p(x,y,z) + 〈log q(z|y)〉p(y,z). (8)

Symbolically, (8) has a form vaguely reminiscent of the objectives optimized by
Information Bottleneck (IB) methods [15]. However, the similarity is deceptive
both conceptually and analytically, which is easy to see by comparing the op-
timization surfaces and the extrema. Additionally, we note that the auxiliary
variational method is applicable to significantly more complex channels, pro-
vided that the variational distributions are appropriately constrained.

The mapping p(z|x, y) to the feature space may be constrained so that the
averages in (8) are tractable. For example, we may choose

p(zj|x, y) = p(zj |x) ∝ exp{−(vT
j x + bj)}, (9)

where zj is the jth state of a multinomial variable z. Analogously, we may con-
strain the variational decoders q(x|y, z) and q(z|y). In a specific case of a linear
Gaussian channel p(y|x) ∼ N (Wx, s2I), we may assume q(x, z|y) ∝ q(x|y, z)q(z)
with q(x|y, zj) ∼ N (Ujy, Sj). Then objective (8) is optimized for the channel en-
coder, variational decoder, and the auxiliary conditional distributions, which is
tractable for the considered parameterization. Effectively, we will still be learning
a noisy linear projection, but for a different (mixture-type) variational decoder.

3.1 Learning Representations in the Augmented {y, z}-Space

Now suppose that the multinomial auxiliary variable z is actually observable
at the receiver’s end of the channel. Under this assumption, we may consider
maximizing an alternative bound ĨH(x, {y, z}) ≤ I(x, {y, z}), defined by analogy
with (4). (We will use the notation IH to indicate that the channel x → {y, z} is
generally heterogeneous; for example, z may be a generally unknown class label,
while y ∈ R

|y| may define a lower-dimensional projection). This leads to a slight
simplification of (8), which effectively reduces to

ĨH(x, {y, z}) = H(x) + 〈log q(x|y, z)〉p̃(x)p(y|x)p(z|x), (10)

where the cross-entropic term is given by

〈log q(x|y, z)〉p(x,y,z) = − 1
2M

|z|∑
j=1

M∑
i=1

p(zj|x(i))tr
{
S−1

j

(
d(i)

j d(i)T
j + s2UjUT

j

)}

− 1
2M

|z|∑
j=1

log |Sj |
M∑
i=1

p(zj|x(i)). (11)
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Here we ignored the irrelevant constants and defined

d(i)
j

def= x(i) − UjWx(i) ∈ R
|x| (12)

to be the distortion between the ith pattern and its reconstruction from a noise-
less code at the mean of q(x|y, zj). From (10) – (12) it is easy to see that small val-
ues of the distortion terms d(i)

j lead to improvements in the bound on I(x, {y, z}),
which agrees with the intuition that the trained model should favour accurate
reconstructions of the source patterns from their compressed representations.

Note that in the communication-theoretic interpretation of the considered
heterogeneous channel, the auxiliary variables z will need to be communicated
over the channel (cf bound (8)). Generally, this comes at a small increase in the
communication cost, which in this case is ∼ O(log |z|). For the model parame-
terization considered here, this corresponds to sending (or storing) an additional
positive integer z, which would effectively index the decoder used at the recon-
struction. Generally, the lower-dimensional representations of {x} will include
not only the codes {y}, but also the auxiliary labels z. Finally, we may note that
unless p(z|x) is strongly constrained, the mapping x → z will typically tend to
be nearly noiseless, as this would decrease H(z|x) and maximize I(x, {y, z}).

4 Demonstrations

Here we demonstrate a few applications of the method to extracting optimal
subspaces for the digits dataset. In all cases, we assumed that |y| < |x|. We also
assumed that p(x) is the empirical distribution.

4.1 Hand-Written Digits: Comparing the Bounds

In the first set of experiments, we compared optimal lower bounds on the mutual
information I(x, y) obtained by maximizing the as-if Gaussian IG(x, y) and the
auxiliary variational Ĩ(x, y) objectives for hand-written digits (a part of the re-
duced MNIST [16] dataset). The dataset contained M = 30 gray-scaled instances
of 14-by-14 digits 1, 2, and 8 (10 of each class), which were centered and normal-
ized. The goal was to find a noisy projection of the |x| = 196-dimensional training
data into a |y| = 6-dimensional space, so that the bounds IG(x, y) and Ĩ(x, y) were
maximized. We considered a linear Gaussian channel with an irreducible white
noise, which in this case leads to the encoder distribution p(y|x) ∼ Ny

(
Wy, s2I

)
with W ∈ R

6×196. Our specific interest was in finding optimal orthonormal pro-
jections, so the weights were normalized to satisfy WWT = I|y| (by considering
the parameterization W = (W̃W̃T )−1/2W̃ with W̃ ∈ R

|y|×|x|). Effectively, this
case corresponds to finding the most informative compressed representations of
the source vectors for improving communication of the non-Gaussian data over
a noisy Gaussian channel (by maximizing lower bounds on the channel capac-
ity). Our specific interest here was to find whether we may indeed improve on
Linsker’s as-if Gaussian bound on the mutual information (with the optima given
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Fig. 3. Variational information maximization for noisy constrained dimensionality re-
duction. (a): Top curves: Average values of the variational auxiliary bounds Ĩ(x, y),
obtained by the IM algorithm started at 10 random model initializations (shown for
|z| = 2, . . . , 5); bottom line: the as-if Gaussian IG(x, y) bound (computed numerically).
The results are shown for the digits data with |x| = 196, |y| = 6 for M = 30 patterns
and T = 30 iterations of the IM. (b): Hinton diagram for WWT

pca(WWT
pca)T ∈ R

6×6

for |z| = 3, T = 30. For orthonormal weights spanning identical subspaces, we would
expect to see the identity matrix.

in this case by the PCA projection) by considering a richer family of auxiliary
variational bounds with multi-modal mixture-type decoders.

Figure 3 shows typical changes in the auxiliary variational bound Ĩ(x, y) as a
function of the IM’s iterations T for |z| ∈ {2, . . . , 5} states of the discrete auxil-
iary variable. (On the plot, we ignored the irrelevant constants H(x) identical for
both Ĩ(x, y) and IG(x, y), and interpolated Ĩ(x, y) for the consecutive iterations).
The mappings were parameterized as described in Section 3, with the random
initializations of the parameters vj and bj around zero, and the initial settings
of the variational prior q(z) = 1/|z|. The encoder weights W were initialized at 6
normalized principal components Wpca ∈ R

6×196 of the sample covariance 〈xxT 〉,
and the variance of the channel noise was fixed at s2 = 1. For each choice of
the auxiliary space dimension |z|, Figure 3 (a) shows the results averaged over
30 random initializations of the IM algorithm. As we see from the plot, the IM
learning leads to a consistent improvement in the auxiliary variational bound,
which (on average) varies from Ĩ0(x, y) ≈ 745.7 to ĨT (x, y) ≈ 822.2 at T = 30 for
|z| = 5. Small variances in the obtained bounds (σT ≈ 2.6 for T = 30, |z| = 5)
indicate a stable increase in the information content independently of the model
initializations. From Figure 3 (a) we can also observe a consistent improvement in
the average Ĩ(x, y) with |z|, changing as Ĩ10(x, y) ≈ 793.9, ≈ 806.3, ≈ 811.2, and
≈ 812.9 for |z| = 2, . . . , 5 after T = 10 IM’s iterations. In comparison, the PCA
projection weights Wpca result in IG(x, y) ≈ 749.0, which is visibly worse than the
auxiliary bound with the optimized parameters, and is just a little better than
Ĩ(x, y) computed at a random initialization of the variational decoder for |z| ≥ 2.
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(a) (b) (c)

Fig. 4. Reconstructions of the source patterns from encoded representations. (a): A
subset of the generic patterns used to generate the source vectors; (b): the correspond-
ing reconstructions from 6 principal components; (c): the corresponding ĨH-optimal re-
constructions at 〈x〉q(x|y,z) = Uzy for the hybrid {y, z} representations (|y| = 6, |z| = 3).

Importantly, we stress once again that the auxiliary variables z are not passed
through the channel. In the specific case which we considered here, the auxil-
iary variables were used to define a more powerful family of variational bounds
which we used to extract the Ĩ-optimal orthonormal subspace. The results are
encouraging, as they show that for a specific constrained channel distribution
we may indeed obtain more accurate lower bounds on the mutual information
I(x, y) without communicating more data than in the conventional case. Specifi-
cally, for Gaussian channels with orthonormal projections to the code space, we
do improve on simple as-if Gaussian solutions (leading to the PCA projections)
by considering optimization of the auxiliary variational bounds (8).

As expected, we may also note that the Ĩ-optimal encoder weights W are
in general different from rotations of Wpca. This is easy to see by computing
WWT

pca(WWT
pca)T , which in our case is visibly different from the identity matrix

(see Fig. 3 (b) for |y| = 6 and |z| = 3), which we would have expected to obtain
otherwise. This indicates the intuitive result that by allowing a greater flexibility
in the choice of the variational decoder distributions, the Ĩ(x, y)-optimal con-
strained encoders become different from the optimal encoders of simpler models
(such as PCA under the linear Gaussian assumption).

4.2 Hand-Written Digits: Reconstructions

Additionally, for the problem settings described in Sec. 4.1, we have computed
reconstructions of the source patterns {x} from their noisy encoded representa-
tions. First, we generated source vectors by adding an isotropic Gaussian noise
to the generic patterns (see Fig. 4 (a)), where the variance of the source noise
was set as s2

s = 0.5. Then we computed noisy linear projections {y} of the source
vectors by using the IG- and the ĨH - optimal encoder weights (in the latter case,
we also computed the auxiliary label z by sampling from the learned p(z|x)).
This stage corresponds to passing encoded representations over the noisy chan-
nels, where the noise variance for the Gaussian part of the channel was fixed
at s2 = 1. Finally, we have used the optimal approximate decoders to perform



112 F. Agakov and D. Barber

the reconstructions from {y} (for IG-optimal PCA projections) and {y, z} (for
ĨH -optimal hybrid channels).

As we see from Figure 4 (b), (c), by a slight modification of the channel (due
to encoding and communicating a multinomial variable z), we may achieve a vis-
ible improvement in the reconstruction of the sources by using the ĨH - optimal
projections2. The results are shown for |y| = 6, |z| = 3 after T = 3 iterations, and
the reconstructions are computed at the analytical mean of the decoder’s com-
ponent q(x|y, z) indexed by the auxiliary variable z. Even though the resulting
hybrid channel may be difficult to justify from the communication viewpoint,
the results suggest that maximization of the bound on I(x, {y, z}) provides a
sensible way to reduce dimensionality of the sources for the purpose of recon-
structing inherently noisy non-Gaussian patterns. Importantly, the variational
decoder q(z|x, y) which maximizes ĨH(x, {y, z}) makes no recourse to p̃(x). There-
fore, just like in the PCA case, we do not need to store the training instances
in order to perform an accurate reconstruction from noisy lower-dimensional
projections. We note once again that the weights of the optimal encoder were
chosen to satisfy the specific orthonormality constraint (though other kinds of
constrained encoders may easily be considered). This contrasts with the exact
approaches to training generative models, where encoding constraints may be
more difficult to enforce.

5 Summary

Here we described an auxiliary variational approach to information maximiza-
tion, and applied it to linear orthonormal dimensionality reduction in the pres-
ence of irreducible Gaussian noise. For this case we can show that the common
as-if Gaussian [9] approximation of MI is in fact a suboptimal special case of
our variational bound, which for isotropic linear Gaussian channels leads to the
PCA solution. Importantly, this means that by using linear Gaussian variational
decoders under the considered Gaussian channel, maximization of the generic
lower bound (4) on MI cannot improve on the PCA projections. The situation
changes if we consider a richer family of variational auxiliary lower bounds on
I(x, y) under the same encoding constraints. In particular, we showed that in the
cases when the source distribution was non-Gaussian, we could significantly im-
prove on the PCA projections by considering multi-modal variational decoders.
This confirms the conceptually simple idea that by allowing a greater flexibility
in the choice of variational decoders, we may get significant improvements over
simple bounds at a limited increase in the computational cost. This result is also
interesting from the communication-theoretic perspective, as it demonstrates a
simple and computationally efficient way to produce better bounds on the capac-
ity of communication channels without altering channel properties (e.g. without
communicating more data across the channels). Finally, we discussed a simple

2 Similar reconstructions could be obtained by maximizing the auxiliary bound Ĩ(x, y)
without communicating z. However, the approximate decoder for this case would be
given as q(x|y) = z q(x|y, z)

〈p(z|x)p(y|x)〉p(x)
〈p(z|x)〉p(x)

, which requires knowing p(x).
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information-theoretic approach to constrained dimensionality reduction for hy-
brid representations x → {y, z}, which may significantly improve reconstructions
of the sources {x} from their lower-dimensional representations {y} at a small
increase in the transmission cost.

It is potentially interesting to compare the variational information-maximizing
framework with other approaches applicable to learning unknown under-complete
representations of the data (such as generative models3 and autoencoders). As
we pointed out, there are important conceptual differences in the way we pa-
rameterize and train encoder and generative models. Specifically, by imposing
explicit constraints on the mapping to the space of representations, our method is
applicable for constrained stochastic dimensionality reduction. This may be par-
ticularly useful in engineering and neural systems, where such constraints may be
physically or biologically motivated. It is also interesting to note that despite im-
portant conceptual differences, the special case of the auxiliary variational bound
on I(x, y) for a Gaussian channel and a multinomial auxiliary space {z} has an
interesting link to likelihood maximization for a mixture of factor-analysis-type
models with the uniform, rather than Gaussian, factor distribution [6] (cf [8]).

It is also interesting to compare our framework with self-supervised train-
ing in semi-parametric models. The most common application of self-supervised
models is dimensionality reduction in autoencoders x → y → x̃, where x(m) =
x̃(m) for all patterns m. Typically, it is presumed that y = f(x), and the models are
trained by minimizing a loss function (such as the squared loss). It is clear that
for noiseless encoders, our bound (4) gives const +

∑
m log q

(
x(m)|y = f(x(m))

)
,

which has the interpretation of an autoencoder whose loss function is determined
by q. Thus a squared loss function can be interpreted as an assumption that the
data x can be reconstructed from noiseless codes y with Gaussian fluctuations.
However, in some sense, the natural loss function (from the MI viewpoint) would
not be the squared loss, but that which corresponds to the Bayesian decoder
q(x|y) = p(x|y), and more powerful models should strive to approximate this.
Indeed, this is also the role of the auxiliary variables – effectively to make a loss
function which is closer to the Bayes optimum. What is also interesting about
our framework is that it holds in the case that the codes are stochastic, for which
the autoencoder framework is more clumsy. Indeed, it also works when we have
a (non-delta mixture) distribution p(x), i.e. the method merges many interesting
models in one framework.
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Abstract. We propose the use of latent space models applied to local
invariant features for object classification. We investigate whether us-
ing latent space models enables to learn patterns of visual co-occurrence
and if the learned visual models improve performance when less labeled
data are available. We present and discuss results that support these
hypotheses. Probabilistic Latent Semantic Analysis (PLSA) automati-
cally identifies aspects from the data with semantic meaning, produc-
ing unsupervised soft clustering. The resulting compact representation
retains sufficient discriminative information for accurate object classifi-
cation, and improves the classification accuracy through the use of un-
labeled data when less labeled training data are available. We perform
experiments on a 7-class object database containing 1776 images.

1 Introduction

The bag-of-words model is one of the most common text document represen-
tations in information retrieval (IR), in which a fixed-size vector stores the oc-
currence of the words present in a document. Although the sequential relations
between words are not preserved, this somewhat drastic simplification allows
simple comparisons between documents, and produces good performance for
document classification and retrieval [1].

A text corpus represented by a bag-of-words is an example of a collection
of discrete data, for which a number of generative probabilistic models have
been recently proposed [5, 2, 3, 6]. The models, able to capture co-occurrence
information between word and documents, have shown promising results in text
dimensionality reduction, feature extraction, and multi-faceted clustering. It is
thus not a surprise that the interest in casting other data sources into this
representation has increased; recent work in computer vision has shown that
images and videos are suitable for a vector-space representation, both for visual
tasks like object matching [14], object classification [17], and cross-media tasks
like image auto-annotation [4, 9, 10].

We propose here to build visual models from images in a similar fashion,
using a quantized version of local image descriptors, dubbed visterms [15, 14].
However, unlike related work, which has only used the basic bag-of-words [14, 17],
we propose to use a probabilistic latent space model, namely Probabilistic Latent
Semantic Analysis (PLSA) [5] to build visual models of objects.
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The different outcomes of this model are principally unsupervised feature ex-
traction and automatic soft clustering of image datasets, that we recently studied
in the context of scene modeling [12]. Independently, Sivic et al. compared two
latent probabilistic models of discretized local descriptors to discover object cat-
egories in image collections [13]. The approach is closely related to what we
propose in this paper and in [12], but fundamentally differs in the assumption
of the latent structure of the data. In [13], the number of classes is assumed to
be known a priori. In contrast we assume that an image is a mixture of latent
aspects that are not necessarily limited to the number of object categories in
the dataset. We consider latent aspect modeling not as a classification system in
itself, but as a feature extraction process for supervised classification. We show
(qualitatively and quantitatively) the benefits of our formulation, and its advan-
tages over the simple vector-space formulation. Based on the results, we believe
that the approach might be worth exploring in other vision areas.

The paper is organized as follows. Section 2 describes the specific probabilistic
model. In Section 3 we discuss the image representation. Section 4 summarizes
results regarding object clustering and classification, and Section 5 concludes
the discussion.

2 Latent Structure Analysis

2.1 Bag-of-Words: Data Sparseness

The vector-space approach tends to produce high-dimensional sparse representa-
tions. Sparsity makes the match between similar documents difficult, especially
if ambiguities exist in the vector-space. In the text case for example, different
words might mean the same (synonymy) and a word can have several mean-
ings (polysemy). This potentially leads to ambiguous data representations. In
practice, such situation also occurs with visterms.

To overcome this problem, different probabilistic generative models [5, 2, 3, 6]
have been proposed to learn the co-occurrence between elements in the vector-
space in an unsupervised manner. The idea is to model a latent data structure
from the co-occurrence of elements in a specific dataset, assuming their indepen-
dence given a latent variable. The elements in the vector space are probabilisti-
cally linked through the latent aspect variable, which identifies a disambiguated
lower-dimensional representation. One model that implements this concept is
PLSA, which we briefly review in the following.

2.2 Probabilistic LSA

In a dataset of Nd documents represented as bag-of-words of size Nx, the PLSA
model assumes that the joint probability of a document di and an element xj

from the vector-space is the marginalization of the Nz joint probabilities of di,
xj and an unobserved latent variable zk called aspect :
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P (xj , di) =
Nz∑
k=1

P (xj , zk, di)

= P (di)
Nz∑
k=1

P (zk | di)P (xj | zk). (1)

Each document is a mixture of latent aspects, expressed by the conditional prob-
ability distribution of the latent aspects given each document di, P (z | di). Each
latent aspect zk is defined by the conditional probability distribution P (x | zk)
in Eq. 1. The parameters are estimated by the Expectation-Maximization (EM)
procedure described in [5] which maximizes the likelihood of the observation
pairs (xj , di). The E-step estimates the probability of the aspect zk given the
element xj in the document di (Eq. 2).

P (zk | di, xj) =
P (xj | zk)P (zk | di)∑Nz

k=1 P (xj | zk)P (zk | di)
(2)

The M-step then derives the conditional probabilities P (x | zk) (Eq. 3) and
P (z | di) (Eq. 4) from the estimated conditional probabilities of aspects P (zk |
di, xj) and the frequency count of the element xj in image di, n(di, xj).

P (xj | zk) =
∑Nd

i=1 n(di, xj)P (zk | di, xj)∑Nx

m=1
∑Nd

i=1 n(di, xm)P (zk | di, xm)
(3)

P (zk | di) =

∑Nx

j=1 n(di, xj)P (zk | di, xj)
n(di)

(4)

To prevent over-fitting, the number of EM iterations is controlled by an
early stopping criterion based on the validation data likelihood. Starting from
a random initialization of the model parameters, the EM iterations are stopped
when the criterion is reached. The corresponding latent aspect structure defined
by the current conditional probability distributions P (x | zk) is saved. Derived
from the vector-space representation, the inference of P (zk | di) can be seen as
a feature extraction process and used for classification. It also allows to rank
images with respect to a given latent aspect zk, which illustrates the latent
structure learned from the data.

3 Images as Bag-of-Visterms

Although global features such as global color histograms or global edge direc-
tion histograms are traditionally used to represent images, a promising recent
research direction in computer vision is the use of local image descriptors. The
combination of interest point detectors and invariant local descriptors has shown
interesting capabilities of describing images and objects. We decided to use the
Difference of Gaussians (DOG) point detector [7] and the Scale Invariant Fea-
ture Transform (SIFT) local descriptors [7], as proposed in recent studies [8].
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Fig. 1. Sorted document frequency counts of the quantized local image patches in the
training set

The SIFT descriptors are local histograms of edge directions and therefore cor-
respond to local image structures. Note that only gray-level information is used
for this process.

The idea is to identify different types of local image patches occurring in
the database to represent an image, similarly to the bag-of-words approach. As
for the word ordering, the spatial information of the local descriptors is not
encoded in the image representation. Those local image patches are obtained
by a standard K-means quantization of the extracted SIFT descriptors in an
image dataset, and are referred to as visterms (visual terms). As an analogy
with text, the image representation is referred to as bag-of-visterms (BOV).
We did not experiment the standard inverse document frequency (idf) weight-
ing, but restricted our experiments to the unweighted BOV representation. As
shown in Figure 3, the K-means quantization produces much more balanced doc-
ument frequencies than what is encountered in text (Zipf’s law), and the BOV
representation therefore does not need to be compensated.

4 Image Modeling with PLSA

4.1 Data Description

To create the visterm vocabulary (K-means) we use a 3805-image dataset con-
structed from several sources. This includes 1002 building images (Zubud), 144
images of people and outdoors [11], 435 indoor images with people faces [17],
490 indoor images from the corel collection [16], 1516 city-landscape overlapped
images from Corel [16] and 267 Internet photographic images. Interests points
are identified on each image with the DOG point detector, a SIFT description
of each point is computed and all SIFT descriptors are quantized with K-means
to construct the visterms ’vocabulary’.

We propose to consider a 7-class dataset to evaluate classification [17]. The
image classes are: faces (792), buildings (150), trees (150), cars (201), phones
(216), bikes (125) and books (142), adding up to a total of 1776 images. The size
of the images varies considerably: images can have between 10k and 1,2M pixels
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aspect 3 aspect 17 aspect 8 aspect 10 aspect 5 aspect 7 aspect 12

Fig. 2. 10 top-ranked images with respect to P (zk | di) for seven selected as-
pects. Images are cropped for a convenient display. A full ranking is available at
http://www.idiap.ch/∼monay/PASCAL LATENT/

while most image sizes are around 100-150k pixels. We resize all images to 100k
pixels since the local invariant feature extraction process is highly dependent of
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the image size. This ensures that no class-dependent image size information is
included in the representation. The dataset is split in 10 test sets, which allows
ten evaluation runs with different training and test sets each time. We decided
to use 1000 visterms to represent each image (size of the BOV).

4.2 Image Soft Clustering

The latent structure learned by PLSA can be illustrated by the top-ranked im-
ages in a dataset with respect to the posterior probabilities P (zk | di). Fig. 2
shows a ranking of seven out of 20 aspects identified by PLSA on the 7-class
dataset described above. We selected Nz= 20 for a cleaner ranking visualiza-
tion. From Fig. 2, we observe that aspects 3 and 17 seem closely related to face
images. The first ten images ranked with respect to aspect 8 are all bike im-
ages, while top-ranked images for aspect 10 mostly contain phones. Buildings
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Fig. 3. Precision and recall curves for the ‘face’, ‘car’, ‘bike’ and ‘tree’ categories,
according to an aspect-based unsupervised image ranking. The lowest precision values
on the graph correspond to a random ranking.
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are present in aspect 5, all images related to aspect 7 are tree images. Aspect 12
does not seem to be related to any specific object category.

To analyze the ranking in more details, the precision and recall curves for the
retrieval of faces, cars, bikes, and trees are shown in Fig. 3. The top left graph
shows that the homogeneous ranking holds on for more than 10 retrieved images
in aspect 3 and 17, confirming the observations made from Fig. 2. We see that
another aspect (13) is closely related to face images. The top right graph from
Fig. 3 shows that aspect number 12 is related to car images if looking deeper in
the ranking, what is not obvious from the observation of Fig. 2. Note however
that the precision/recall values are not as high as for the faces case. The bottom
left graph confirms that aspect 8 is linked to bike images, as well as aspect 1
even if less obvious. The bottom right graph shows that top-ranked images with
respect to aspect 7 are mainly tree images. These results confirm that PLSA can
capture class-related information in an unsupervised manner.

4.3 Images as Mixtures of Aspects

Our model explicitly considers an image as a mixture of latent aspects expressed
by the P (z | d) distributions learned from PLSA. The same latent structure with
Nz= 20 aspects used for the aspect-based image ranking is considered. As illus-
trated by the aspect-based image ranking from Fig. 2, some identified aspects
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Fig. 4. Images and their corresponding aspect distribution P (z | d) for Nz= 20. (a) is
concentrated on aspect 5 (building), while (b) is a mixture of aspects 5 (building), 7
(tree) and aspect 1.
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Fig. 5. Images and their corresponding aspect distribution P (z | d) for Nz= 20. (a) is
a mixture of different aspects, (b) is a mixture of aspect 8 (bikes) and 7 (trees).

relate to specific object categories. Within the dataset, different examples of as-
pect mixtures can be observed. In Fig. 4 (a) the aspect distribution is mainly
concentrated on the aspect related to ’building’ images. The image only contains
building structures, therefore the aspect distribution seems coherent. On the con-
trary, the image from Fig. 4 (b) is composed of both ’building’ and ’tree’ -related
structures. The corresponding aspect distribution interestingly reflects this im-
age composition with the most probable aspects related to ’building’ and ’tree’.

It is important to point out that there are cases when the aspect distribution
does not clearly correspond to the image semantic. Fig. 5 (a) shows the close-up
of a bike, but the aspect distribution is not concentrated on aspect 8, previously
related to ’bike’ images. The aspect distribution P (z | d) rather describes the
image as a mixture of several aspects with no specific dominance. This ambiguous
aspect representation could derive from the fact that only a few examples of this
type of close-up appear in the database. In Fig. 5 (b), the image is identified
as a mixture of aspect 8 and 7, which perfectly reflects the image composition.
Bikes are located in the image on a tree/vegetation background.

4.4 Feature Extraction

The PLSA model can be seen as a feature extraction or dimensionality reduction
process: from the bag-of-visterms, a lower-dimensional aspect-based representa-
tion P (zk | di) is inferred using a previously learned PLSA model. Here we
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propose to compare the aspect-based and the bag-of-visterms representations on
the 7-class supervised classification task. The PLSA model is trained on all non-
test images each time and the resulting model is used to extract the aspect-based
representation. To evaluate the quality of the feature extraction, we compare the
classification based on the BOV representation with the aspect-based represen-
tation with the same classification setup: one Support Vector Machine (SVM)
per class is trained with one class against all others.

Table 1. Confusion matrix for the 7-class object classification problem using the bag-
of-visterms features, summed over 10 runs, and average classification error with the
variance over ten runs indicated in brackets

faces buildings trees phones cars bikes books error
faces 772 2 7 3 3 2 3 2.5(0.04)
buildings 6 100 6 5 12 5 16 33.3(1.70)
trees 1 3 141 1 3 1 0 6.0(0.60)
phones 14 0 0 187 6 2 7 13.4(1.20)
cars 18 1 2 12 162 3 3 19.4(1.46)
bikes 0 3 3 1 2 116 0 7.2(0.38)
books 13 8 0 9 9 1 102 28.2(1.86)

Table 2. Confusion matrix for the 7-class object classification problem using PLSA
with Nz= 60 aspects as a feature extraction process, summed over 10 runs, and average
classification error with the variance over ten runs indicated in brackets

faces buildings trees phones cars bikes books error
faces 772 2 5 1 10 1 1 2.5(0.02)
buildings 2 113 3 3 18 5 6 24.6(1.40)
trees 3 3 140 0 2 2 0 6.7(0.40)
phones 9 5 0 166 23 2 11 23.1(0.60)
cars 14 5 0 3 172 4 3 14.4(0.67)
bikes 0 3 4 0 4 113 1 9.6(0.69)
books 7 13 0 6 14 0 102 28.2(1.54)

Table 1 and Table 2 show the confusion matrix for the BOV and the PLSA-
based classification with Nz= 60 aspects. The last column is the per class error.
We see that the classification performance greatly depends on the object class
for both the BOV and the PLSA representations. These differences are caused
by diverse factors. For instance ’trees’ is a well defined class that is dominated
by high frequency texture visterms, and therefore does not get confused with
other classes. Similarly, most ’face’ images have an homogeneous background
and consistent layout which will not create ambiguities with other classes in the
BOV representation. This explains the good performance of these two categories.

On the contrary, ’car’ images present a large variability in appearance within
the database. Front, side and rear car views on different types of background can
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Table 3. Comparison between the bag-of-visterms (BOV) and the PLSA-based repre-
sentation (PLSA) for classification with an SVM classifier trained with progressively
less training data on the 7-class problem. The number in brackets is the variance over
the different data splits.

Method 90% 50% 10% 5%
PLSA (Nz= 60) 11.1(1.6) 12.5(1.5) 18.1(2.7) 21.7(1.7)
BOV 11.1(2.0) 13.5(2.0) 21.8(3.6) 26.7(2.8)

be found, what makes it a highly complex category for object classification, gen-
erating an important confusion with other classes. ’Phones’, ’books’ and ’build-
ings’ are therefore confused with ’cars’ in both the BOV and the PLSA case.
The ’bike’ class is well classified despite a variability in appearance comparable
to the ’car’ images, because the bike structure generates a discriminative BOV
representation.

Table 3 summarizes the whole set of experiments when we gradually train the
SVM classifiers with less training data. If using all the training data (90% of all
data) for feature extraction and classification, BOV and PLSA achieve a similar
total error score. This proves that while achieving a dimensionality reduction
from 1000 visterms to Nz= 60 aspects, PLSA keeps sufficient discriminative
information for the classification task.

The case in which PLSA is trained on all the training data, while the SVMs
are trained on a reduced data portion of it, it corresponds to a partially labeled
data problem. Being completely unsupervised, the PLSA approach can take
advantage of any unlabeled data and build the aspect-based representation from
it. This advantage with respect to supervised strategies is shown in Table 3 for
50%, 10% and 5% training data. Here the comparison between BOV and PLSA is
done for the same reduced number of labeled images to train the SVM classifiers,
while the PLSA model is still trained on the full 90% training data. The total
classification errors show that the features extracted by PLSA outperform the
raw BOV representations for the same amount of labeled data. Note also that
the variance over the splits is smaller, which suggests that the model is more
stable given the reduced dimensionality.

5 Conclusion

For an object classification task, we showed that using PLSA on a bag-of-visterms
representation (BOV) produces a compact, discriminative representation of the
data, outperforming the standard BOV approach in the case of small amount
of training data. Also, we showed that PLSA can capture semantic meaning in
the BOV representation allowing for both unsupervised ranking of object images
and description of images as a mixture of aspects. These results motivate further
investigation of this and other latent space approaches for task related to object
recognition.
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Abstract. Feature selection is usually motivated by improved computa-
tional complexity, economy and problem understanding, but it can also
improve classification accuracy in many cases. In this paper we inves-
tigate the relationship between the optimal number of features and the
training set size. We present a new and simple analysis of the well-studied
two-Gaussian setting. We explicitly find the optimal number of features
as a function of the training set size for a few special cases and show
that accuracy declines dramatically by adding too many features. Then
we show empirically that Support Vector Machine (SVM), that was de-
signed to work in the presence of a large number of features produces the
same qualitative result for these examples. This suggests that good fea-
ture selection is still an important component in accurate classification.

1 Introduction

Feature selection is the task of choosing a small subset out of a given set of
features that captures the relevant properties of the data. In the context of
supervised classification problems, relevance is determined by the assigned labels
on the training data. The main advantages of feature selection are: reduced
computational complexity, economy (as it saves the cost of measuring irrelevant
features), insight into the problem at hand and improved classification accuracy.
In this work we focus on the latter issue. It is well known that the presence
of many irrelevant features can reduce classification accuracy. Many algorithms
have been suggested for the task of feature selection, e.g. Infogain [1], Relief [2],
Focus [3], selection using Markov Blanket [4] and Margin Based [5]. See [6] for
a comprehensive discussion of feature selection methodologies.

This work looks at choosing the optimal subset of features in terms of clas-
sification accuracy. Obviously, if the true statistical model is known, or if the
sample is unlimited, any additional feature can only improve accuracy. However,
when the training set is finite, additional features can degrade the performance
of many classifiers, even when all the features are statistically independent and
carry information on the label. This phenomenon is sometimes called “the peak-
ing phenomenon” and was already demonstrated more than three decades ago
by [7, 8, 9] and in other works (see references there) on the classification prob-
lem of two Gaussian-distributed classes with equal covariance matrices (LDA).
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Recently, [10] analyzed this phenomenon for the case where the covariance ma-
trices are different (QDA), however, this analysis is limited to the case where
all the features have equal contributions. On the other hand [11] showed that,
in the Bayesian setting, the optimal Bayes classifier can only benefit from using
additional features. However, using the optimal Bayes classifier is usually not
practical due to its computational cost and the fact that the true prior over the
classifiers is not known. In their discussion, [11] raised the problem of designing
classification algorithms which are computationally efficient and robust with re-
spect to the feature space. Now, three decades later, it is worth inquiring whether
today’s state-of-the-art classifiers, such as Support Vector Machine (SVM) [12],
achieve this goal.

In this work we re-visit the two-Gaussian classification problem, and concen-
trate on a simple setting of two spherical Gaussians. We present a new simple
analysis of the optimal number of features as a function of the training set size.
We consider the maximum likelihood estimation as the underlying classification
rule. We analyze its error as function of the number of features and number of
training instances, and show that while the error may be as bad as chance when
using too many features, it approchs to the optimal error if we chose the number
of features wisely. We also explicitly find the optimal number of features as a
function of the training set size for a few specific examples. We test SVM em-
pirically in this setting and show that its performance matches the predictions
of our analysis. This suggests that feature selection is still a crucial component
in designing an accurate classifier, even when modern discriminative classifiers
are used, and even if computational constraints or measuring costs are not an
issue.

The remainder of the paper is organized as follows: we describe the problem
setting in section 2. Our analysis is presented in section 3. Next, we explicitly
find the optimal number of features for a few examples in section 4. The results
of applying SVM are presented in section 5.

2 Problem Setting and Notation

First, let us introduce some notation. Vectors in RN are denoted by bold face
lower case letter (e.g. x, μ) and the j’th coordinate of a vector x is denoted by
xj . We denote the restriction of a vector x to the first n coordinates by xn.

Assume that we have two classes in RN , labeled +1 and −1. The distribution
of the points in the positive class is Normal (μ, Σ = I) and the distribution of
the points in the negative class is Normal (−μ, Σ = I), where μ ∈ RN , and I is
the N×N unit matrix. To simplify notation we assume, without loss of generality,
that the coordinates of μ are ordered in descending order of their absolute value
and that μ1 �= 0; thus if we choose to use only n < N features, the best choice
would be the first n coordinates. The optimal classifier, i.e., the one that achieves
the maximal accuracy, is h (x) = sign (μ · x). If we are restricted to using only
the first n features, the optimal classifier is h (x, n) = sign (μn · xn).
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In order to analyze this setting we have to consider a specific way to estimate
μ from a training sample Sm =

{
xi, yi

}m

i=1, where xi ∈ RN and yi ∈ {+1,−1}
is the label of xi. We consider the maximum likelihood estimator of μ:

μ̂ = μ̂ (Sm) =
1
m

m∑
i=1

yixi

Thus the estimated classifier is ĥ (x) = sign (μ̂ · x). For a given μ̂ and number
of features n, we look on the generalization error of this classifier:

error (μ̂, n) = P (sign (μ̂n · xn) �= y)

where y is the true label of x. This error depends on the training set. Thus, for
a given training set size m, we are interested in the average error over all the
possible choices of a sample of size m:

error (m, n) = ESmerror (μ̂ (Sm) , n) (1)

We look for the optimal number of features, i.e. the value of n that minimizes
this error:

nopt = argmin
n

error (m, n)

3 Analysis

For a given μ̂, and n the dot product μ̂n · xn is a Normal random variable on
its own and therefore the generalization error can be explicitly written as (using
the symmetry of this setting):

error (μ̂, n) = P ( μ̂n · xn < 0|+ 1) = Φ

(
− Ex (μ̂n · xn)√

Vx (μ̂n · xn)

)
(2)

here Φ is the Gaussian cumulative density function: Φ (a) = 1√
2π

∫ a

−∞ e−
1
2 z2

dz.
We denote by Ex and Vx expectation and variance with respect to the true
distribution of x.

For a given number of features n, and a given sample S, we have

Ex (μ̂n · xn) = μ̂n · μn =
n∑

j=1

μ̂jμj

and

Vx (μ̂n · xn) =
n∑

j=1

μ̂2
jVx (xj) =

n∑
j=1

μ̂2
j

substituting in equation (2) we get:

error (μ̂, n) = Φ

⎛
⎝−∑n

j=1 μ̂jμj√∑n
j=1 μ̂2

j

⎞
⎠ (3)
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Now, for a given training set size m, We want to find n that minimizes the
average error term ESm (error (μ̂, n)), but instead we look for n that minimizes
an approximation of the average error:

nopt = argmin
n

Φ

⎛
⎜⎜⎝−ESm

(∑n
j=1 μ̂jμj

)
√

ESm

(∑n
j=1 μ̂2

j

)
⎞
⎟⎟⎠ (4)

We first have to justify why the above term approximates the average error.
We look at the variance of the relevant terms (the numerator and the term
in the square root in the denominator). μ̂j is a Normal random variable with
expectation μj and variance 1/m, thus

VSm

⎛
⎝ n∑

j=1

μ̂jμj

⎞
⎠ =

n∑
j=1

μ2
jVSm (μ̂j) =

1
m

n∑
j=1

μ2
j −−−−→m→∞

0 (5)

VSm

⎛
⎝ n∑

j=1

μ̂2
j

⎞
⎠ =

2n

m2 +
4
m

n∑
α=1

μ2
j −−−−→m→∞

0 (6)

where in the last equality we used the fact that if Z ∼ Normal
(
μ, σ2

)
, then

V
(
Z2
)

= 2σ4 + 4σ2μ2. We also note that:

ESm

⎛
⎝ n∑

j=1

μ̂2
j

⎞
⎠ =

n∑
j=1

(
VSm (μ̂j) + E (μ̂j)

2
)

=
n∑

j=1

(
μ2

j +
1
m

)
−−−−→
m→∞

n∑
j=1

μ2
j > 0

therefore the denominator is not zero for any value of m (including the limit
m → ∞). Combining this with (5) and (6) and recalling that the derivative of
Φ is bounded by 1, we conclude that, at least for a large enough m, it is a good
approximation to move the expectation inside the error term. Figure 1 shows
numerically that for specific choices of μ, moving the expectation inside the error
term is indeed justified.

Now we turn to finding the n that minimizes (4), as function of the training
set size m . This is equivalent to finding n that maximizes

f(n, m) =
ESm

(∑n
j=1 μ̂jμj

)
√

ESm

(∑n
j=1 μ̂2

j

) =

∑n
j=1 μ2

j√∑n
j=1

(
μ2

j + 1
m

) =

∑n
j=1 μ2

j√
n
m +

∑n
j=1 μ2

j

(7)



Is Feature Selection Still Necessary? 131

0 50 100
0.1

0.2

0.3

0.4

0.5
(a)

true error
E inside

0 50 100
0.1

0.2

0.3

0.4
(b)

true error
E inside

0 200 400 600
0

0.05

0.1

0.15

0.2
(c)

true error
E inside

0 10 20
0

0.05

0.1

0.15

0.2

(d)

true error
E inside

0 10 20
0

0.05

0.1

0.15

0.2

(e)

true error
E inside

0 20 40 60
0.15

0.2

0.25

0.3

0.35

(f)

true error
E inside

Fig. 1. Numerical justification for using equation 4. The true and approximate
error (“E-inside”) as function of the number of features used for different choices of
μ: (a) μj = 1/

√
2j , (b) μj = 1/j, (c) μj = 1/

√
j, (d) μj = 1, (e) μj = rand (sorted)

and (f) μj = rand/j (sorted). The training set size here is m = 16. The true error
was estimated by averaging over 200 repeats. The approximation with the expectation
inside error term is very close to the actual error term (1), even for small training set
(m = 16).

3.1 Observations on the Optimal Number of Features

First, we can see that, for any finite n, when m → ∞, f (n, m) reduces to√∑n
j=1 μ2

j and thus, as expected, using all the features maximizes it. It is also

clear that adding a completely non-informative feature μj (μj = 0) will decrease
f (n, m). We can also formulate a sufficient condition for the situation where
using too many features is harmful, and thus feature selection can improve the
accuracy dramatically:

Statement 1. For the above setting, if the partial sum series sn =
∑n

j=1 μ2
j <

∞ then for any finite m the error of the ML classifier approaches to 1/2 when
n →∞ and there is n0 = n0 (m) < ∞ such that selecting the first n0 features is
superior to selecting k features for any k > n0.

Proof. Denote limn→∞ sn = s < ∞, then the numerator of (7) approaches
s, while the denominator approaches ∞, thus f(n, m) −−−−→

n→∞
0 and the error

Φ (−f (n, m)) → 1/2. On the other hand f(n, m) > 0 for any finite n, thus there
exists n0 such that f (n0, m) > f (k, m) for any k > n0.

Note that it is not possible to replace the condition in the above statement
by μj −−−→

j→∞
0 (see example 4). The following consistency statement gives a
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sufficient condition on the number of features that ensure asymptotic optimal
error:

Statement 2. For the above setting, if we use a number of features n = n (m)
that satisfies (1) n −−−−→

m→∞
∞ and (2) n

m −−−−→
m→∞

0 then the error of the ML

estimator approaches to the optimal possible error (i.e. the error when μ is known
and we use all the features) when m → ∞. Additionally, if

∑n
j=1 μj −−−−→

n→∞
∞, condition (2) above can be replaced with n

m −−−−→
m→∞

c, where c is any finite
constant.

Proof. Recalling that the optimal possible error is given by Φ
(
−
√∑∞

j=1 μj

)
,

the statement follows directly from equation 7.

Corollary 1. Using the optimal number of features ensure consistency (in the
sense of the above statement).

Note as well that the effect of adding a feature depends not only on its value,
but also on the current value of the numerator and the denominator. In other
words, the decision whether to add a feature depends on the properties of the
features we have added so far. This may be surprising, as the features here are
statistically independent. This apparent dependency comes intuitively from the
signal-to-noise ratio of the new feature to the existing ones.

Another observation is that if all the features are equal, i.e. μj = c where c
is a constant,

f(n, m) =
c2√

1
m + c2

√
n

and thus using all the features is always optimal. In this respect our situation is
different from the one analyzed by [7]. They considered Anderson’s W classifica-
tion statistic [13] for the setting of two Gaussians with same covariance matrix,
but both the mean and the covariance were not known. For this setting they
show that when all the features have equal contributions, it is optimal to use
m− 1 features (where m is the number of training examples).

4 Specific Choices of μ

Now we find the optimal number of features for a few specific choices of μ.

Example 1. Let μj = 1√
2j

, i.e., μ =
(

1√
2
, 1√

4
, 1√

8
, . . . , 1√

2N

)
, thus ‖μ‖ −−−−→

n→∞
1.

An illustration of the density functions for this case is given in figure 2(a).
Substituting this μ in (7), we obtain:

f (n, m) =
1− 1

22−n√
n
m + 1− 1

22−n
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Taking the derivative with respect to n and equating to zero we get1 :

−1
4
2−2n ln 2 + 2−n ln 2

(
1 +

n

m
+

1
2m

)
− 1

m
= 0

Assuming n is large, we ignore the first term and get:

m =
1

ln 2
2n − n− 1

2 ln 2

Ignoring the last two lower order terms, we have:

1√
m
∼=

ln 2√
2n

= (ln 2)μn

This makes sense as 1/
√

m is the standard deviation of μj , so the above equation
says that we only want to take features with a mean larger than the standard
deviation. However, we should note that this is true only in order of magni-
tude. No meter how small the first feature is, it is worth to take it. Thus, we
have no hope to be able to find optimal criterion of the form: take feature j only
if μj > f (

√
m).

Example 2. Let μj = 1/j. An illustration of the density functions for this case

is given in figure 2(b). Since
∑∞

j=1

(
1
j

)2
= π2

6 ,

n∑
j=1

(
1
j

)2

>
π2

6
−
∫ ∞

n

1
x2 dx =

π2

6
− 1

n

n∑
j=1

(
1
j

)2

<
π2

6
−
∫ ∞

n+1

1
x2 dx =

π2

6
− 1

n + 1

thus the lower bound π2

6 −
1
n approximates the finite sum up to 1

n−
1

n+1 = 1
n(n+1) .

Substituting this lower bound in (7), we obtain:

f (n, m) ∼=
π2

6 − 1
n√

n
m + π2

6 − 1
n

taking the derivative with respect to n and equating to zero yields m ∼= n3π2−18n2

nπ2−6

and thus for a large n we obtain the power law m ∼= n2, or n ∼=
√

m = m
1
2 , and

again we have 1√
m
∼= 1

n = μn.

1 The variable n is an integer, but we can consider f (n, m) to be defined for any real
value.
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n=1
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n=3 n→ ∞

n=1

(b)

n=7 n→∞

n=1

(c)

n=30 n=106

Fig. 2. Illustration of the separation between classes for different number of features
(n), for different choices of μ. The projection on the prefix of μ of the density function
of each class and the combined density (in gray) are shown. (a) for example 1, (b) for
example 2 and (c) for example 3.

Example 3. Let μj = 1√
j
, i.e μ =

(
1, 1√

2
, . . . 1√

N

)
. An illustration of the sepa-

ration between classes for a few choices of n is given in figure 2(c). Substituting∑n
j=1 μ2

j
∼= log n in (7) we get:

f (n, m) =
log n√

n
m + log n

(8)

taking the derivative with respect to n and equating to zero, we obtain:

m ∼=
n (log n− 2)

log n

thus for a large n we have m ∼= n, and once again we have 1√
m
∼= 1√

n
= μn.

This example was already analyzed by Trunk ([8]) who showed that for any
finite number of training examples, the error approaches one half when the num-
ber of features approaches ∞. Here we get this results easily from equation (8),
as for any finite m, f (n, m) −−−−→

n→∞
0, thus the error term Φ (−f (n, m)) ap-

proaches 1/2. on the other hand, when μ is known the error approaches zero
when n increases, since ‖μ‖ −−−−→

n→∞
∞ while the variance is fixed. Thus, from

corollary 1 we know that by using m = n the error approaches to zero when m
grows, and our experiments show that it drops very fast (for m ∼ 20 it is already
below 5% and for m ∼ 300 below 1%).
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Example 4. In this example we show that the property μj −−−→
j→∞

0 does not

guarantee that feature selection can improve classification accuracy. Define sn =∑n
j=1 μ2

j . Let μj be such that sn = nα with 1
2 < α < 1. Since α < 1, it follows

that indeed μj → 0. On the other hand, by substituting in (7) we get:

f (n, m) =
nα√

n
m + nα

=
nα/2√

n1−α

m + 1

thus for n > mα−1,

f (n, m) ≥ nα/2√
2n1−α

m

= nα−1/2
√

m

2

and since α > 1/2, we have that f (n, m) −−−−→
n→∞

∞ and thus using all the
features is optimal. We can see that the intuitive relation between the value of
the smallest feature we want to take and 1√

m
that raised in the previous examples

does not hold here. this demonstrate that thinking on this value as proportional
to 1√

m
may be misleading.

5 SVM Performance

So far we have seen that the naive maximum likelihood classifier is impeded
by using too many weak features, even when all the features are relevant and
independent. However it is worth testing whether a modern and sophisticated
classifier such as SVM that was designed to work in very high dimensional spaces
can overcome the “peaking phenomenon”. For this purpose we tested SVM on
the above two Gaussian setting in the following way. We generated a training set
with 1000 features, and trained linear2 SVM on this training set 1000 times, each
time using a different number of features. Then we calculated the generalization
error of each returned classifier analytically. The performance associated with a
given number of features n is the generalization error achieved using n features,
averaged over 200 repeats. We used the SVM tool-box by Gavin Cawley [14]. The
parameter C was tuned manually to be C = 0.0001, the value which is favorable
to SVM when all (1000) features are used. The results for the examples described
in section 4 for three different choices of training set size are presented in figure 3.

We can see that in this setting SVM suffers from using too many features
just like the maximum likelihood classifier3. On the other hand, it is clear that
in other situations SVM does handle huge number of features well, otherwise
it could not be used together with kernels. Therefore, in order to understand
why SVM fails here, we need to determine in what way our high dimensional
scenario is different from the one caused by using kernels. The assumption which

2 The best classifier here is linear, thus linear kernel is expected to give best results.
3 This strengthen the observation in [15] (page 384) that additional noise features

hurts SVM performance.
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Fig. 3. The error of SVM as a function of the number of features used. The
top, middle and bottom rows correspond to μj equals 1/

√
2j , 1/j and 1/

√
j respectively.

The columns correspond to training set sizes of 16, 100 and 225. The SVM error was
estimated by averaging over 200 repeats. The graphs show that SVM produces the same
qualitative behavior as the ML classifier we used in the analysis and that pre-scaling
of the features strengthen the effect of too many features on SVM.

underlies the usage of the large margin principle, namely that the density around
the true separator is low, is violated in our first example (example 1), but not for
the other two examples (see figure 2). Moreover, if we multiply the μ of example
1 by 2, then the assumption holds and the qualitative behavior of SVM does not
change. Hence this cannot be a major factor.

One might suggest that a simple pre-scaling of the features, such as dividing
each features by an approximation of its standard deviation4, might help SVM.
Such normalization is useful in many problems, especially when different features
are measured in different scales. However, in our specific setting it is not likely
that such normalization can improve the accuracy, as it just suppress the more
useful features. Indeed, our experiments shows (see figure 3, dotted lines) that
the pre-scaling strengthen the effect of too many features on SVM.
4 Given the class, the standard deviation is the same for all the features (equals to 1),

but the overall standard deviation is larger for the first features, as in the first
coordinates the means of the two classes a more well apart.
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Fig. 4. The effect of the degree of a polynomial kernel on SVM error μ = (1, 0)
and the training set size is m = 20. The results were averaged over 200 repeats. The
effect of the kernel degree on the difference in accuracy using one or both features is
not significant.

One significant difference is that in our setting the features are statistically
independent, whereas when the dimension is high due to the usage of kernels,
the features are highly correlated. In other words, the use of kernels is equiva-
lent to deterministic mapping of low dimensional space to a high dimensional
space. Thus there are many features, but the actual dimension of the embedded
manifold is low whereas in our setting the dimension is indeed high. We ran one
initial experiment which supported the assumption that this difference was sig-
nificant in causing the SVM behavior. We used SVM with a polynomial kernel
of increasing degrees in the above setting with μ = (1, 0), i.e. one relevant fea-
ture and one irrelevant feature. The results are shown in figure 4. The accuracy
declines as the degree increases as expected (since the best model here is linear).
However, the effect of the kernel degree on the difference in accuracy using one
or both features is not significant, despite the fact that the number of irrelevant
features grows exponentially with the kernel degree5.

6 Discussion

In this work we discussed the relationship between the optimal number of fea-
tures and the training set size. Using a simple setting of two spherical Gaussians
we showed that in some situations SVM does not handle large number of weakly
relevant features correctly and achieves suboptimal accuracy, much like a naive
classifier. We suggest that the ability of SVM to work well in the presence of
huge number of features may be restricted to cases where the underlying dis-
tribution is concentrated around a low dimensional manifold, which is the case
when kernels are used. However, this issue should be further investigated.

5 When a polynomial kernel of degree k is used, only k features are relevant whereas
2k − k are irrelevant.
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In this work we focused on feature selection, but the same fundamental ques-
tion is relevant for dimensionality reduction as well. In this setting one looks
for any conversion of the data to low dimensional subspace that preserves the
relevant properties. Thus one should ask in what way the optimal dimension de-
pends on the number of training instances. We do not have definitive formulation
for this question yet, but we expect that a similar trade-off can be found.
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Abstract. We propose a new method for discriminant analysis, called
High Dimensional Discriminant Analysis (HDDA). Our approach is based
on the assumption that high dimensional data live in different subspaces
with low dimensionality. We therefore propose a new parameterization of
the Gaussian model to classify high-dimensional data. This parameteriza-
tion takes into account the specific subspace and the intrinsic dimension
of each class to limit the number of parameters to estimate. HDDA is
applied to recognize object parts in real images and its performance
is compared to classical methods.

Keywords: Discriminant analysis, class-specific subspaces, dimension
reduction, regularization.

1 Introduction

Many scientific domains need to analyze data which are increasingly complex. For
example, visual descriptors used in object recognition are often high-dimensional
and this penalizes classification methods and consequently recognition. In high-
dimensional feature spaces, the performance of learning methods suffers from
the curse of dimensionality [1] which deteriorates both classification accuracy
and efficiency. Popular classification methods are based on a Gaussian model
and show a disappointing behavior when the size of the training dataset is too
small compared to the number of parameters to estimate. To avoid overfitting,
it is therefore necessary to find a balance between the number of parameters to
estimate and the generality of the model. In this paper we propose a Gaussian
model which determines the specific subspace in which each class is located and
therefore limits the number of parameters to estimate. The maximum likelihood
method is used for parameter estimation and the intrinsic dimension of each class
is determined automatically with the scree-test of Cattell. This allows to derive
a robust discriminant analysis method in high-dimensional spaces, called High
Dimensional Discriminant Analysis (HDDA). It is possible to make additional
assumptions on the model to further limit the number of parameters. We can

C. Saunders et al. (Eds.): SLSFS 2005, LNCS 3940, pp. 139–150, 2006.
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assume that classes are spherical in their subspaces and it is possible to fix
some parameters to be common between classes. A comparison with standard
discriminant analysis methods on a recently proposed dataset [4] shows that
HDDA outperforms them.

This paper is organized as follows. Section 2 presents the discrimination prob-
lem and existing methods to regularize discriminant analysis in high-dimensional
spaces. Section 3 introduces the theoretical framework of HDDA and, in section 4,
some particular cases are studied. Section 5 is devoted to the inference aspects.
Our method is then compared to classical methods on a real image dataset in
section 6.

2 Discriminant Analysis Framework

2.1 Discrimination Problem

The goal of discriminant analysis is to assign an observation x ∈ R
p with un-

known class membership to one of k classes C1, ..., Ck known a priori. For this, we
have a learning dataset A = {(x1, c1), ..., (xn, cn)/xj ∈ R

p and cj ∈ {1, ..., k}},
where the vector xj contains p explanatory variables and cj indicates the in-
dex of the class of xj . The optimal decision rule, called Bayes decision rule,
assigns the observation x to the class Ci∗ which has the maximum a poste-
riori probability. This is equivalent to minimize a cost function Ki(x), i.e.,
i∗ = argmini=1,...,k{Ki(x)}, with Ki(x) = −2 log(πi fi(x)), where πi is the a pri-
ori probability of class Ci and fi(x) denotes the class conditional density of x,
∀i = 1, ..., k. For instance, assuming that fi(x) is a Gaussian density leads to the
well known Linear Discriminant Analysis (LDA) and Quadratic Discriminant
Analysis (QDA) methods.

2.2 Dimension Reduction and Parsimonious Models

In high dimensional spaces, the majority of classification methods shows a dis-
appointing behavior when the size of the training dataset is too small compared
to the number of parameters to estimate. To avoid overfitting, it is therefore
necessary to reduce the number of parameters. This is possible by either reduc-
ing the dimension of the data or by using a parsimonious model with additional
assumptions on the model.

Dimension reduction. Many methods use global dimension reduction techniques
to overcome problems due to high-dimensionality. A widely used solution is to
reduce the dimensionality of the data before using a classical discriminant analy-
sis method. The dimension reduction can be done using Principal Components
Analysis (PCA) or a feature selection technique. It is also possible to reduce the
data dimension with classification as a goal by using Fisher Discriminant Analy-
sis (FDA) which projects the data on the (k − 1) discriminant axes and then
classifies the projected data. The dimension reduction is often advantageous in
terms of performance but loses information which could be discriminant due to
the fact that most approaches are global and not designed for classification.
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Parsimonious models. Another solution is to use a model which requires the es-
timation of fewer parameters. The parsimonious models used most often involve
an identical covariance matrix for all classes (used in LDA), i.e., ∀i, Σi = Σ,
or a diagonal covariance matrix, i.e., Σi = diag(σi1, ..., σip). Other approaches
propose new parameterizations of the Gaussian model in order to find different
parsimonious models. For example, Regularized Discriminant Analysis [6] uses
two regularization parameters to design an intermediate classifier between QDA
and LDA. The Eigenvalue Decomposition Discriminant Analysis [2] proposes to
re-parameterize the covariance matrices of the classes in their eigenspace. These
methods do not allow to efficiently solve the problem of the high-dimensionality,
as they do not determine the specific subspaces in which the data of each class
live.

3 High Dimensional Discriminant Analysis

The empty space phenomenon [9] allows us to assume that high-dimensional
data live in different low-dimensional subspaces hidden in the original space. We
therefore propose in this section a new parameterization of the Gaussian model
which combines a local subspace approach and a parsimonious model.

3.1 The Gaussian Mixture Model

Similarly to classical discriminant analysis, we assume that class conditional
densities are Gaussian N (μi, Σi), ∀i = 1, ..., k. Let Qi be the orthogonal matrix
of eigenvectors of the covariance matrix Σi and Bi be the eigenspace of Σi,
i.e., the basis of eigenvectors of Σi. The class conditional covariance matrix Δi

is then defined in the basis Bi by Δi = Qt
i Σi Qi. Thus, Δi is diagonal and

made of eigenvalues of Σi. We assume in addition that Δi has only two different
eigenvalues ai > bi:

Δi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ai 0
. . .

0 ai

0

0

bi 0
. . .

0 bi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬
⎭ di

⎫⎬
⎭ (p− di)

Let Ei be the affine space generated by the eigenvectors associated with the
eigenvalue ai with μi ∈ Ei, and let E

⊥
i be Ei ⊕ E

⊥
i = R

p with μi ∈ E
⊥
i . Thus,

the class Ci is both spherical in Ei and in E
⊥
i . Let Pi(x) = Q̃iQ̃i

t
(x − μi) + μi

be the projection of x on Ei, where Q̃i is made of the di first columns of Qi and
supplemented by zeros. Similarly, let P⊥

i (x) = (Qi − Q̃i)(Qi − Q̃i)t(x− μi) + μi

be the projection of x on E
⊥
i . Figure 1 summarizes these notations.
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Fig. 1. The subspaces Ei and E
⊥
i of the class Ci

3.2 Decision Rule and a Posteriori Probability

Deriving the Bayes decision rule with the model described in the previous section
yields the decision rule of High Dimensional Discriminant Analysis (HDDA).

Theorem 1. Bayes decision rule yields the decision rule δ+ which classifies x
as the class Ci∗ such that i∗ = argmini=1,...,k{Ki(x)} where Ki is defined by:

Ki(x) =
1
ai
‖μi−Pi(x)‖2+

1
bi
‖x−Pi(x)‖2+di log(ai)+(p−di) log(bi)−2 log(πi).

Proof. We derive Bayes decision rule for the Gaussian model presented in sec-
tion 3.1. Writing fi with the class conditional covariance matrix Δi gives:

−2 log(fi(x)) = (x− μi)t(QiΔiQ
t
i)

−1(x− μi) + log(det Δi) + p log(2π).

Moreover, Qt
iQi = Id and consequently:

−2 log(fi(x)) =
[
Qt

i(x− μi)
]t

Δ−1
i

[
Qt

i(x− μi)
]
+ log(det Δi) + p log(2π).

Given the structure of Δi, we obtain:

−2 log(fi(x)) =
1
ai
‖Q̃i

t
(x− μi)‖2 +

1
bi
‖(Qi − Q̃i)

t
(x− μi)‖2

+ log(det Δi) + p log(2π).

Using definitions of Pi and P⊥
i and in view of figure 1, we obtain:

−2 log(fi(x)) =
1
ai
‖μi − Pi(x)‖2 +

1
bi
‖x− Pi(x)‖2 + log(detΔi) + p log(2π).

The relation log(det Δi) = di log(ai) + (p− di) log(bi) concludes the proof. �

The a posteriori probability P (x ∈ Ci|x) measures the probability that x belongs
to Ci and allows to identify dubiously classified points. Basing on Bayes’ formula,
we can write: P (x ∈ Ci|x) = 1/

∑k
l=1 exp

( 1
2 (Ki(x) −Kl(x))

)
.
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4 Particular Rules

By allowing some of the HDDA parameters to be common between classes, we
obtain particular rules which correspond to different types of regularization,
some of which are easily geometrically interpretable. Due to space restrictions,
we present only the two most important particular cases: HDDAi and HDDAh.
In order to interpret these particular decision rules, the following notations are
useful: ∀i = 1, ..., k, ai = σ2

i

αi
and bi = σ2

i

(1−αi)
with αi ∈]0, 1[ and σi > 0.

4.1 Isometric Decision Rule (HDDAi)

Here, the following additional assumptions are made: ∀i = 1, ..., k, αi = α,
σi = σ, di = d and πi = π∗. In this case, the classes are isometric.

Proposition 1. Under these assumptions, the decision rule classifies x as the
class Ci∗ such that i∗ = argmini=1,...,k{Ki(x)} where Ki is defined by:

Ki(x) =
1
σ2

(
α‖μi − Pi(x)‖2 + (1− α)‖x− Pi(x)‖2) .

For particular values of α, HDDAi has simple geometrical interpretations:

– Case α = 0: HDDAi assigns x to the class Ci∗ if ∀i = 1, ..., k, d(x, Ei∗ ) <
d(x, Ei). From a geometrical point of view, the decision rule assigns x to the
class associated with the closest subspace Ei.

– Case α = 1: HDDAi assigns x to the class Ci∗ if ∀i = 1, ..., k, d(μi∗ , Pi∗(x)) <
d(μi, Pi(x)). It means that the decision rule assigns x to the class for which
the mean is closest to the projection of x on the subspace.

– Case 0 < α < 1: the decision rule assigns x to the class realizing a compro-
mise between the two previous cases. The estimation of α is discussed in the
following section.

4.2 Homothetic Decision Rule (HDDAh)

This method differs from the previous one by removing the constraint σi = σ,
and classes are thus homothetic.

Proposition 2. In this case, the decision rule classifies x as the class Ci∗ such
that i∗ = argmini=1,...,k{Ki(x)} where Ki is defined by:

Ki(x) =
1
σ2

i

(α‖μi − Pi(x)‖2 + (1− α)‖x− Pi(x)‖2) + 2p log(σi).

HDDAh generally favours classes with a large variance. We can observe on
Figure 2 that HDDAh favours the blue class which has the largest variance
whereas HDDAi gives the same importance to both classes. It assigns to the
blue class a point which is far from the axis of the red class, i.e., which does not
live in the specific subspace of the red class.
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(a) HDDAi (b) HDDAh

Fig. 2. Decision rules obtained with HDDAi and HDDAh on simulated data

4.3 Removing Constraints on di and πi

The two previous methods assume that di and πi are fixed. However, these as-
sumptions can be too restrictive. If these constraints are removed, it is necessary
to add the corresponding terms in Ki(x): if di are free, then di log(1−α

α ) must
be added and if πi are free, then −2 log(πi) must be added.

5 Estimators

The estimators are obtained by Maximum Likelihood (ML) estimation based on
the learning dataset. In the following, parameters πi, μi and Σi of the class Ci

are estimated by their empirical counterparts:

π̂i =
ni

n
, μ̂i =

1
ni

∑
xj∈Ci

xj , Σ̂i =
1
ni

∑
xj∈Ci

(xj − μ̂i)t(xj − μ̂i),

where ni is the cardinality of the class Ci.

5.1 HDDA Estimators

Assuming for the moment that the di are known, we obtain the following ML
estimates.

Proposition 3. The ML estimators of matrices Q̃i and parameters ai and bi

exist and are unique, ∀i = 1, ..., k:

(i) The di first columns of Q̃i are estimated by the eigenvectors associated to
the di largest eigenvalues of Σ̂i,

(ii) âi is the mean of the di largest eigenvalues of Σ̂i:

âi =
1
di

di∑
l=1

λil,

where λil is the lth largest eigenvalue of Σ̂i,
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(iii) b̂i is the mean of the (p−di) smallest eigenvalues of Σ̂i and can be written:

b̂i =
1

(p− di)

(
Tr(Σ̂i)−

di∑
l=1

λil

)
.

Proof. Equation (2.5) of [5] provides the following log-likelihood expression:

−2 log(Li(xj ∈ Ci, μi, Σi)) = ni

p∑
l=1

(
log δil +

1
δil

qt
ilΣ̂iqil

)
+ Cte,

with δil = ai if l ≤ di and δil = bi otherwise. This quantity is to be minimized
under the constraint qt

ilqil = 1, which is equivalent to find a saddle point of the
Lagrange function:

Li = ni

p∑
l=1

(
log δil +

1
δil

qt
ilΣ̂iqil

)
−

p∑
l=1

θil(qt
ilqil − 1),

where θil are the Lagrange multipliers. The derivative with respect to ai is:

∂Li

∂ai
=

nidi

ai
− ni

a2
i

di∑
l=1

qt
ilΣ̂iqil,

and the condition ∂Li

∂ai
= 0 implies that:

âi =
1
di

di∑
l=1

qt
ilΣ̂iqil. (1)

In the same manner, the partial derivative of Li with respect to bi is:

∂Li

∂bi
=

ni(p− di)
bi

− ni

b2
i

p∑
l=di+1

qt
ilΣ̂iqil,

and the condition ∂Li

∂bi
= 0 implies that:

b̂i =
1

(p− di)

p∑
l=di+1

qt
ilΣ̂iqil =

1
(p− di)

(
Tr(Σ̂i)−

di∑
l=1

qt
ilΣ̂iqil

)
. (2)

In addition, the gradient of Li with respect to qil is ∀l ≤ di:

∇qil
Li = 2

ni

δil
Σ̂iqil − 2θilqil,

and by multiplying this quantity on the left by qt
il, we obtain:

qt
il∇qil

Li = 0 ⇔ θil =
ni

δil

ˆqt
ilΣiqil.
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Consequently, Σ̂iqil = θilδil

ni
qil which means that qil is the eigenvector of Σ̂i

associated to the eigenvalue λil = θilδil

ni
. Replacing in (1) and (2), we obtain

the ML estimators for ai and bi. Vectors qil being eigenvectors of Σ̂i which is
a symmetric matrix, this implies that qt

ilqih = 0 if h �= l. In order to minimize
the quantity −2 logLi at the optimum, âi must be as large as possible. Thus,
the di first columns of Qi must be the eigenvectors associated to the di largest
eigenvalues of Σ̂i. �

Note that the decision rule of HDDA requires only the estimation of the matrix
Q̃i instead of the entire Qi and this reduces significantly the number of para-
meters to estimate. For example, if we consider 100-dimensional data, 4 classes
and common intrinsic dimensions di equal to 10, HDDA estimates only 4 323
parameters whereas QDA estimates 20 603 parameters.

5.2 HDDAi Estimators

Proposition 4. The ML estimators of parameters α and σ exist and are unique:

α̂ =
b̂

â + b̂
, σ̂2 =

âb̂

â + b̂
,

with â =
k
i=1 ni

di
l=1 λil

npγ , b̂ =
k
i=1 ni Tr(Σ̂i)−

di
l=1 λil

np(1−γ) where γ = 1
np

∑k
i=1 nidi

and λil is the lth largest eigenvalue of Σ̂i.

Proof. In this case, the log-likelihood expression is:

−2 log(L) =
k∑

i=1

ni

p∑
l=1

(
log δil +

1
δil

λil

)
+ Cte,

where δil = a if l ≤ di and b otherwise. One can write:

−2
∂

∂a
log(L) = 0 ⇔

k∑
i=1

ni

di∑
l=1

(
1
a
− 1

a2 λil

)
= 0 ⇔ â =

∑k
i=1 ni

∑di

l=1 λil

npγ
,

with γ = 1
np

∑k
i=1 nidi. Similarly,

−2
∂

∂b
log(L) = 0 ⇔ b̂ =

∑k
i=1 ni

(
Tr(Σ̂i)−

∑di

l=1 λil

)
np(1− γ)

.

Replacing these estimates in expressions of α and σ concludes the proof. �

5.3 HDDAh Estimators

Proposition 5. The ML estimate of α has the following formulation according
to σi, ∀i = 1, ..., k:

α̂(σ1, ..., σk) =
(Λ + 1)−

√
Δ

2Λ
,
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with the notations:

Δ = (Λ + 1)2 − 4Λγ, Λ =
1
np

k∑
i=1

ni

σ2
i

(
2

di∑
l=1

λil − Tr(Σ̂i)

)
,

and the ML estimate of σ2
i has the following formulation according to α:

∀i = 1, ..., k, σ̂2
i (α) =

1
p

(
(2α− 1)

di∑
l=1

λil + (1 − α)Tr(Σ̂i)

)
.

Proof. In this case, one can write:

−2 log(L) =
k∑

i=1

ni

[
2p log σi − di log α− (p− di) log(1− α)

+
1
σ2

i

(
(2α− 1)

di∑
l=1

λil + (1− α)Tr(Σ̂i)

)]
.

Therefore,

∂

∂α
log(L) = 0 ⇔

k∑
i=1

ni

(
−di

α
+

(p− di)
(1− α)

+
2
∑di

l=1 λil

σ2
i

− Tr(Σ̂i)
σ2

i

)
= 0,

⇔ np

(
− γ

α
+

(1− γ)
(1− α)

+ Λ

)
= 0,

where γ = 1
np

∑k
i=1 nidi and Λ = 1

np

∑k
i=1

ni

σ2
i

(
2
∑di

l=1 λil − Tr(Σ̂i)
)
. Thus,

∂

∂α
log(L) = 0 ⇔ ψ(α) = Λα2 − (Λ + 1)α + γ = 0.

The discriminant of the previous equation is Δ = (Λ + 1− 2γ)2 + 4γ(1 − γ)
with γ < 1 and consequently Δ > 0. By remarking that ψ(0) = γ > 0 and
ψ(1) = γ − 1 < 0, one can conclude that the solution is in [0, 1] and is the
smallest of both solutions of ∂

∂α log(L) = 0. In addition,

∂

∂σi
log(L) = 0 ⇔ σ2

i =
1
p

(
(2α− 1)

di∑
l=1

λil + (1− α)Tr(Σ̂i)

)
,

and thus provides the expression of σ2
i according to α. �

Note that the estimators of both α and σi are not explicit and thus they should
be computed using an iterative procedure.
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5.4 Estimation of the Intrinsic Dimension

The estimation of the dataset intrinsic dimension is a difficult problem which
does not have an explicit solution. If the dimensions di are common between
classes, i.e., ∀i = 1, ..., k, di = d, we determine by cross-validation the dimen-
sion d which maximizes the correct classification rate on the learning dataset.
Otherwise, we use an approach based on the eigenvalues of the class conditional
covariance matrix Σ̂i. The jth eigenvalue of Σ̂i corresponds to the fraction of
the full variance carried by the jth eigenvector of Σ̂i. We therefore estimate the
class specific dimension di, i = 1, ..., k, with the empirical method scree-test of
Cattell [3] which analyzes the differences between eigenvalues in order to find a
break in the scree. The selected dimension is the one for which the subsequent
differences are smaller than a threshold t. In our experiments, the threshold t is
chosen by cross-validation. We also used the probabilistic criterion BIC [8] which
gave very similar dimension choices. In our experiments, the estimated intrinsic
dimensions are on average 10 whereas the dimension of the original space is 128.

6 Experimental Results

Object recognition is one of the most challenging problems in computer vi-
sion. Many successful object recognition approaches use local images descriptors.
However, local descriptors are high-dimensional and this penalizes classification
methods and consequently recognition. HDDA seems therefore well adapted to
this problem. In this section, we use HDDA to recognize object parts in images.

6.1 Protocol and Data

For our experiments, small scale-invariant regions are detected on each image
and they are characterized by the local Sift descriptor [7]. We extracted Sift
descriptors of dimension 128 for 100 motorbike images from a recently proposed
visual recognition database [4]. For these local descriptors, we selected 2000 de-
scriptors representing 4 classes: wheels, seat, handlebars and background. The
learning and the test dataset contain respectively 500 and 1500 descriptors. The
pre-processed data are available at http://lear.inrialpes.fr/~bouveyron/
data/data_swc.tgz. We compared HDDA to the following classical discrimi-
nant analysis methods: Linear Discriminant Analysis (LDA), Fisher Discrimi-
nant Analysis (FDA) and Support Vector Machines with a RBF kernel (SVM).
The parameters t of HDDA and γ of SVM are estimated by cross-validation on
the learning dataset.

6.2 Recognition Results

Figure 3 shows recognition results obtained using HDDA methods and state-
of-the-art methods with respect to the number of descriptors classified as pos-
itive.To obtain the plots we vary the decision boundary between object classes
and background, i.e., we change the posterior probabilities provided by gener-
ative methods and, for SVM, we vary the parameter C. On the left, only the
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Fig. 3. Classification results for the “motorbike” recognition: comparison between
HDDA methods (left) and between HDDAi and state-of-the-art methods (right)

Fig. 4. Recognition of “motorbike” parts using HDDAi (top) and SVM (bottom). The
colors blue, red and green are respectively associated to handlebars, wheels and seat.

descriptors with the highest probabilities to belong to the object are used. As
a results only a small number of descriptors are classified as positive and their
precision (number of correct over total number) is high.

The left plot shows that HDDAi is more efficient than other HDDA methods
for this application. This is due to the fact that parameters bi are common in
HDDAi, i.e., the noise is common between classes. More extensive experiments
have confirmed that HDDA with common bi performs in general well for our
data. The right plot compares HDDAi to SVM, LDA and FDA. First of all,
we observe that the results for LDA (without dimension reduction) are unsatis-
fying. The results for FDA show that global dimension reduction improves the
results. Furthermore, HDDAi obtains better results than SVM and FDA and this
demonstrates that our class-specific subspace approach is a good way to classify
high-dimensional data. Note that HDDA and HDDAh are also more precise than
these three methods when the number of detected positives is small. A compar-
ison with a SVM with a quadratic kernel did not improve the results over the
RBF kernel.
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Figure 4 presents recognition results for a few test images. These results
confirm that HDDAi gives better recognition results than SVM, i.e., the classi-
fication errors are significantly lower for HDDAi than for SVM. For example, in
the 3rd column of Figure 4, HDDA recognizes the motorbike parts without error
whereas SVM makes five errors. In addition, training time for HDDA is as fast
as other generative methods and 7 times faster than SVM. Note that recognition
time is negligible for all methods.

7 Conclusion

We presented a parameterization of the Gaussian model to classify high-dimen–
sional data in a supervised framework. This model results in a robust and fast
discriminant analysis method. We successfully used this method to recognize
object parts in natural images. An extension of this work is to use the statistical
model of HDDA to adapt the method to unsupervised classification.
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Abstract. Matrix factorization is a fundamental building block in many com-
puter vision and machine learning algorithms. In this work we focus on the prob-
lem of ”structure from motion” in which one wishes to recover the camera motion
and the 3D coordinates of certain points given their 2D locations. This problem
may be reduced to a low rank factorization problem. When all the 2D locations
are known, singular value decomposition yields a least squares factorization of
the measurements matrix. In realistic scenarios this assumption does not hold:
some of the data is missing, the measurements have correlated noise, and the
scene may contain multiple objects. Under these conditions, most existing fac-
torization algorithms fail while human perception is relatively unchanged. In this
work we present an EM algorithm for matrix factorization that takes advantage
of prior information and imposes strict constraints on the resulting matrix factors.
We present results on challenging sequences.

1 Introduction

The problem of “structure from motion” (SFM) has been studied extensively
[15, 14, 11, 10, 2] in computer vision: Given the 2D locations of points along an im-
age sequence, the goal is to retrieve the 3D locations of the points. Under simplified
camera models, this problem reduces to the problem of matrix factorization [15].

Using SVD, the correct 3D structure can be recovered even if the measurements
matrix is contaminated with significant amounts of noise and if the number of frames
is small [15].

However, in realistic situations the measurement matrix will have missing entries,
due to occlusions or due to inaccuracies of the tracking algorithm. A number of algo-
rithms for factorization with missing data [15, 10, 14, 2] have been suggested. While
some of these algorithms obtain good results when the data is noiseless, in the presence
of even small amounts of noise these algorithms fail.

The problem becomes much harder when the input sequence contains multiple ob-
jects with different motions. Not only do we need to recover camera parameters and
scene geometry, but we also need to decide which data points should be grouped to-
gether. This problem was formulated as a matrix factorization problem by Costeira-
Kanade [3]. They suggested to compute an affinity matrix related to the singular value

C. Saunders et al. (Eds.): SLSFS 2005, LNCS 3940, pp. 151–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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decomposition of the measurements matrix. Then they decide whether two points have
the same motion or not by inspecting if some entries of this affinity matrix are zero or
not (Gear [5] and Zelnik-Manor et al. [17] follow a similar approach). In the noiseless
case these methods perform well, but once even small amounts of noise exist, these
methods no longer work since matrix entries that were supposed to be zero are not zero
anymore. Furthermore, these methods require some prior knowledge on the rank of the
different motions, or linear independence between them.

In this paper we present a framework for matrix factorization capable of incorpo-
rating priors and enforcing strict constraints on the desired factorization while handling
missing data and correlated noise in the observations. Previous versions of this work
were published in [7, 8].

2 Structure from Motion: Problem Formulation and an Algorithm

A set of P feature points in F images are tracked along an image sequence. Let (ufp,
vfp) denote image coordinates of feature point p in frame f . Let W = (wij) where
w2i−1,j = uij and w2i,j = vij for 1 ≤ i ≤ F and 1 ≤ j ≤ P .

In the orthographic camera model, points in the 3D world are projected in parallel
onto the image plane. For example, if the image coordinate system is aligned with
the coordinate system of the 3D world, then a point P = [X, Y, Z]T is projected to
p = (u, v) = (X, Y ) (the depth, Z , has no influence on the image). In this model, a
camera can undergo rotation, translation, or a combination of the two. W can be written
as [15]:

[W ]2F×P = [M ]2F×4 [S]4×P + [η]2F×P (1)

where M =

⎡
⎣ M1

...
MF

⎤
⎦

2F×4

and S =

⎡
⎢⎣

X1 · · · XP

Y1 · · · YP

Z1 · · · ZP

1 · · · 1

⎤
⎥⎦

4×P

.

Each Mi is a 2×4 matrix that describes camera parameters in the i’th frame. It consists

of location and orientation [Mi]2×4 =
[

mT
i di

nT
i ei

]
where mi and ni are 3 × 1 vectors

that describe the rotation of the camera; di and ei are scalars describing camera transla-
tion1. The matrix S contains the 3D coordinates of the feature points, and η is Gaussian
noise.

If the elements of the noise matrix η are uncorrelated and of equal variance then
we seek a factorization that minimizes the mean squared error between W and MS.
This can be solved trivially using the SVD of W . Missing data can be modeled using
equation 1 by assuming some elements of the noise matrix η have infinite variance. Ob-
viously SVD is not the solution once we allow different elements of η to have different
variances.

1 Note that we do not subtract the mean of each row from it, since in case of missing data the
centroids of visible points in different rows of the matrix do not coincide.
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2.1 Factorization as Factor Analysis

We seek a factorization of W to M and S that minimizes the weighted squared error∑
t [(Wt − MtS)T Ψ−1

t (Wt −MtS)], where Ψ−1
t is the inverse covariance matrix of

the feature points in frame t.
It is well known that the SVD calculation can be formulated as a limiting case of

maximum likelihood (ML) factor analysis [12]. In standard factor analysis we have a
set of observations {y(t)} that are linear combinations of latent variables {x(t)}:

y(t) = Ax(t) + η(t) (2)

with x(t) ∼ N(0, σ2
xI) and η(t) ∼ N(0, Ψt). In the case of a diagonal Ψt with constant

elements Ψt = σ2I then in the limit σ/σx → 0 the ML estimate for A will give the
same answer as the SVD.

Let A = ST . Identifying y(t) with the t’th row of the matrix W and x(t) with
the t’th row of M , then equation 1 is equivalent (transposed) to equation 2. Therefore,
equation 1 can be solved using the EM algorithm for factor analysis [13] which is a
standard algorithm for finding the ML estimate for the matrix A. The EM algorithm
consists of two steps: (1) the expectation (or E) step in which expectations are cal-
culated over the latent variables x(t) and (2) the maximization (or M) step in which
these expectations are used to maximize the likelihood of the matrix A. The updating
equations are:

E step:

E(x(t)|y(t)) =
(
σ−2

x I + AT Ψ−1
t A

)−1
AT Ψ−1

t y(t) (3)

V (x(t)|y(t)) =
(
σ−2

x I + AT Ψ−1
t A

)−1
(4)

〈x(t)〉 = E(x(t)|y(t)) (5)〈
x(t)x(t)T

〉
= V (x(t)|y(t)) + 〈x(t)〉 〈x(t)〉T (6)

Although in our setting the matrix A must satisfy certain constraints, the E-step (in
which the matrix A is assumed to be given from the M-step) remains the same as in
standard factor analysis. So far, we assumed no prior on the motion of the camera, i.e.
σx → ∞ and thus σ−2

x → 0. In subsection 2.2 we describe how to incorporate priors
regarding the motion into the E-step.

M step: In the M step we find the 3D coordinates of a point p denoted by sp ∈ R3:

sp = BpC
−1
p (7)

where

Bp =
∑

t

[
Ψ−1

t (p, p)(utp − 〈dt〉)
〈
m(t)T

〉
(8)

+ Ψ−1
t (p + P, p + P )(vtp − 〈et〉) 〈n(t)〉T

]
Cp =

∑
t

[
Ψ−1

t (p, p)
〈
m(t)m(t)T

〉
+ Ψ−1

t (p + P, p + P )
〈
n(t)n(t)T

〉]
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where the expectations required in the M step are the appropriate subvectors and sub-
matrices of 〈x(t)〉 and

〈
x(t)x(t)T

〉
.

If we set Ψ−1
t (p, p) = 0 when point p is missing in frame t then we obtain an EM

algorithm for factorization with missing data. Note that the form of the updates means
that we can put any value we wish in the missing elements of y and they will be ignored
by the algorithm.

A more realistic noise model for real images is that Ψt is not diagonal but rather that
the noise in the horizontal and vertical coordinates of the same point are correlated with
an arbitrary 2 × 2 inverse covariance matrix. It can be shown that the posterior inverse

covariance matrix is

[∑
I2
x

∑
IxIy∑

IxIy

∑
I2
y

]
(Ix and Iy are the directional derivatives of

the image and the sum is taken over a window of fixed size around each pixel). This
problem is usually called factorization with uncertainty [9, 11]. To consider dependen-
cies between the u and v coordinates of a point, the matrix W can be reshaped (to size
F×8) to have both coordinates in the same row (with a corresponding change in M and
S). A non diagonal Ψt would express the correlation of the noise in the horizontal and
vertical coordinates of the same point. With this representation, it is easy to derive the
M step in this case as well. It is similar to equation 7 except that cross terms involving
Ψ−1

t (p, p + P ) are also involved:

sp = (Bp + B′
p)(Cp + C′

p)
−1 (9)

where

B′
p =

∑
t

[
Ψ−1

t (p, p + P )(vtp − 〈et〉)
〈
m(t)T

〉
(10)

+ Ψ−1
t (p + P, p)(utp − 〈dt〉) 〈n(t)〉T

]
C′

p =
∑

t

[
Ψ−1

t (p, p + P )
〈
n(t)m(t)T

〉
+ Ψ−1

t (p + P, p)
〈
m(t)n(t)T

〉]
Regardless of uncertainty and missing data, the complexity of the EM algorithm

grows linearly with the number of feature points and the number of frames.

2.2 Adding Priors on the Desired Factorization

The EM framework allows us to place priors on both structure and motion and to deal
with directional uncertainty and missing data. We first show how to place a prior on the
motion in the form of temporal coherence. Next we show how to place a prior on the 3D
structure of the scene.

Temporal Coherence: The factor analysis algorithm assumes that the latent variables
x(t) are independent (figure 1(a)). In SFM this assumption means that the camera loca-
tions in different frames are independent and hence permuting the order of the frames
makes no difference for the factorization. In almost any video sequence this assumption
is wrong. Typically camera location varies smoothly as a function of time (figure 1(b)).
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Fig. 1. a. The graphical model assumed by most factorization algorithms for SFM. The camera
location x(t) is assumed to be independent of the camera location at any other time step. b.
The graphical model assumed by our approach. We model temporal coherence by assuming a
Markovian structure on the camera location.

Specifically, in this work we use a second order approximation to the motion of the
camera (details can be found in [7, 8]). Note that we do not assume that the 2D tra-
jectory of each point is smooth. Rather we assume the 3D trajectory of the camera is
smooth.

It is straightforward to derive the EM iterations for a ML estimate of S using the
model in figure 1(b). The M step is unchanged from the classical factor analysis. The
only change in the E step is that E(x(t)|y) and V (x(t)|y) need to be calculated using
a Kalman smoother. We use a standard RTS smoother [6]. Note that the computation of
the E step is still linear in the number of frames and datapoints.

Prior on Structure: Up to this point, we have assumed nothing regarding the 3D
coordinates of the feature points we are trying to reconstruct. The true 3D coordinates
are considered (a priori) as likely as any other coordinates, even ones that suggest the
object is located at an infinite position, or behind the camera, for example. Usually when
sequences are acquired for structure reconstruction, the object is located just in front of
the camera in the center of the scene, and not at infinity2. Therefore, we should prefer
reconstructions that place the feature points around certain coordinates in the world,
denoted by S0 (typically X and Y are scattered around zero and Z is finite). We model
this preference with the following prior: Pr(S) ∝ e−λ‖S−S0‖2

F , where λ is a parameter
that determines the weight of this prior.

Derivation of the modified M-step with the addition of the prior on structure yields
(the following modification of equation 9):

sp = (Bp + B′
p)(Cp + C′

p + λ(I − S0))−1 (11)

Experimental results show an improvement in reconstruction results in noisy scenes
after the addition of this naive prior.

3 Constrained Factorization for Subspace Separation

In dynamic scenes with multiple moving objects, each of the K independent motions
has its own motion parameters, M j

i (a 2×4 matrix describing the jth camera parameters

2 Although for objects to comply with affine model they have to be located relatively far from
the camera, they are not placed at infinity.
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at time i). Denote by Sj the 4 × Pj matrix of the Pj points moving according to the
jth motion component. The matrix formed by taking the locations of points sharing
the same motion along the sequence is of rank 4. In other words, the vectors of point
locations of points with the same motion form a 4D linear subspace defined by the
common motion (in fact this is a 3D affine subspace). This is a problem of subspace
separation.

Let W̃ be a matrix of observations whose columns are ordered to group together
points with the same motion. Then ([3]):

[
W̃
]
2F×P

= MS̃ =

⎡
⎢⎣M1

1 · · · MK
1

...
M1

F · · · MK
F

⎤
⎥⎦

2F×4K

⎡
⎢⎢⎣

S1 0 · · · 0
0 S2 · · · 0
...
0 0 · · · SK

⎤
⎥⎥⎦

4K×P
(12)

In real sequences, however, measurements are not grouped according to their mo-
tion. Therefore, the observation matrix, W , is an arbitrary column permutation of the
ordered matrix W̃ :

W = W̃Π = MS (13)

where S4K×P describes scene structure (with unordered columns) and ΠP×P is a col-
umn permutation matrix. Hence, the structure matrix S is in general not block diagonal,
but rather a column permutation of a block diagonal matrix:

S = S̃Π (14)

Therefore, in each column of the structure matrix corresponding to a point belonging to
the kth motion, only entries 4(k − 1) + 1, . . . , 4k can be non-zeros (entry 4k always
equals one).

Finding a factorization of W to M and S that satisfies this constraint would solve
the subspace separation problem: from the indices of the non-zero entries in S we can
assign each point to the appropriate motion component.

The constrained factorization problem can be written as a constrained factor analy-
sis problem as follows: By substituting A = ST and identifying x(t) with the tth row
of M , the constrained factorization problem is equivalent to the factor analysis problem
of equation 2 where A is subject to the constraints on ST . We adapt the EM algorithm
for single motion presented in the previous section to solve constrained factor analysis
problem.

Since the matrix A is assumed to be known in the E step, no change is required in
the E step of the algorithm from the previous section. The M step, on the other hand,
should be modified to find A that satisfies the constraints.

We modify the M step to find S that is a permuted block diagonal matrix. The
columns of S (which are the rows of A) can be found independently on each other
(each point is independent on the other points given the motion). We show how to find
each of the columns of S that will contain non zeros only in the 4 entries corresponding
to its most likely motion. Denote by πp the motion that maximizes the likelihood for
point p and let π = (π1, . . . , πP ). Let sp denote the 3D coordinates of point p, and let
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Ŝ denote [s1, . . . , sP ] the 3D coordinates of all points (S contains both segmentation
and geometry information, Ŝ contains only geometry information).

We look for S that maximizes the expected complete log likelihood (where the
expectation is taken over M , the motion parameters of all motion components at all
times). Maximizing the expected complete log likelihood is equivalent to minimizing
of the expectation of an energy term. In terms of energy minimization, the expectation
of the energy due to equation 13 is:

E(S) = E(Ŝ, π) =
〈
E(Ŝ, π, M)

〉
M

= (15)∑
p

〈E(sp, πp, M)〉M =

∑
p

∑
t

〈
((Wt,p −Mt,πpsp)T Ψ−1

t,p (Wt,p −Mt,πpsp))
〉

M

The energy is the weighted sum of square error of the matrix equation 13. In other
words, it is the sum of the error over all the points at all times, weighted by the inverse
covariance matrix Ψ−1

t,p (the sum over the points is implicit in the vectorial notation of
the energy for a single motion at the beginning of section 2.1).

As can be seen from equation 15, E(S) can be represented as a sum of terms
Ep(sp, πp) = 〈E(sp, πp, M)〉M involving a single point:

E(S) =
〈
E(Ŝ, π, M)

〉
M

=
∑

p

Ep(sp, πp) (16)

Therefore the minimization of E(S) can be performed by minimizing Ep(sp, πp) for
each point p independent on the others.

Since sp is unknown, we define

Ep(πp) = min
sp

Ep(sp, πp) (17)

And we get

min
sp,πp

Ep(sp, πp) = min
πp

[
min
sp

Ep(sp, πp)
]

= min
πp

Ep(πp) (18)

Let sk
p = argminsp Ep(sp, k) for a given k. The value of sk

p can be computed using one
of the equations 7, 9,11, replacing dt, m(t), et and n(t) with dk

t , mk(t), ek
t and nk(t)

respectively. Once all the sk
p are known, Ep(k) are computed for all k by substitut-

ing sk
p in equation 15. Then we choose πp = arg mink Ep(k). The new value of the

pth column of S is all zeros except the four entries 4(πp − 1) + 1, . . . , 4πp. Entries
4(πp − 1) + 1, . . . , 4(πp − 1) + 3 are set to be sk

p and entry 4πp is set to 1.
By modifying the EM algorithm to deal with constrained factorization we now have

an algorithm that is guaranteed to find a factorization where the structure matrix has
at most 4 nonzero elements per column, even in the presence of noise (in contrast to
[3, 5, 17]). Note that no prior knowledge of the rank of the different motions is needed,
neither is any assumption on the linear independence of the different motions.
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4 Experiments

In this section we describe the experimental performance of EM for SFM and for mo-
tion segmentation. In each case we describe the performance of EM with and without
temporal coherence.

4.1 EM for SFM

We evaluate EM for structure from motion compared to ground truth and to previous
algorithms for structure from motion with missing data [15, 10, 14, 2]. For [15, 10, 14]
we used the Matlab implementation made public by D. Jacobs 3.

Fig. 2. Synthetic input for evaluation of structure from motion algorithms. A transparent cylinder
is rotating around its elongated axis. Points randomly drawn from its surface are projected on the
camera plane at each frame. Replotted from [1].

The first input sequence is a synthetic sequence of a transparent rotating cylinder as
depicted in figure 2. This sequence (that was first presented in [16]) consists of 100 points
uniformly drawn from the cylinder surface. The points are tracked along 20 frames. We
checked the performance of the different algorithms in the following cases: (1) full noise
free observation matrix , (2) noisy full observation matrix (to create noisy input, the ob-
served image locations were added a Gaussian noise with σ = 0, . . . , 0.5), (3) noiseless
observations with missing data and (4) noisy observations with missing data.

All algorithms performed well and gave similar results for the full matrix noiseless
sequence.

In the fully observed noisy case, factor analysis without temporal coherence gave
comparable performance to the algorithm of Tomasi-Kanade, which minimizes ‖MS−
W‖2

F . When temporal coherence was added, the reconstruction results were improved.
The results of Shum’s algorithm were similar to Tomasi-Kanade. The algorithms of
Jacobs and Brand turned out to be noise sensitive.

In the experiments with missing data, Tomasi-Kanade’s algorithm and Shum’s al-
gorithm could not handle this pattern of missing data and failed to give any structure.
The algorithms of Jacobs and Brand turned out to be noise sensitive.

3 The code is available at http://www.cs.umd.edu/∼djacobs
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Fig. 3. The graphs depict influence of noise and percentage of missing data on reconstruction re-
sults of factor analysis and [10]. The input sequence for these experiments is depicted in figure 2.

−150−100−50050100
−100

−50

0

50

100

150

200

(a) (b)

Fig. 4. Results of scene reconstruction from a real sequence: A binder is placed on a rotating
surface filmed with a static camera. Our algorithm succeeded in (approximately) obtaining the
correct structure while all other algorithms failed. a. The first frame of the sequence. b. The
reconstructed object shown in top view. The 3 lines visible are the outlines of the object. Each
of these lines is the vertical projection of each of the 3 visible sides of the box. The longer line
corresponds to the side of the box closer to the camera and the shorter lines correspond to the 2
other sides visible along the sequence.

Figure 3 shows a comparison between both versions of EM and the algorithm of
Jacobs. The performance of the algorithms was tested as a function of noise level and
percentage of missing data. Figure 4 shows result on a real sequence for which EM
with temporal coherence succeeded to recover the correct structure, while all other
algorithms have failed.

4.2 EM for Motion Segmentation

Figure 5 shows quantitative comparisons of EM and Costeira and Kanade for three
different synthetic sequences as a function of noise level. It is apparent that all
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Fig. 5. Comparison of different factorization algorithms for motion segmentation on synthetic
inputs. The graphs display total number of misclassified points as a function of the noise standard
deviation for σ = 0, . . . , 0.25. In some of the experiments, the graphs of the two factor analysis
versions overlap. a. sequence of concentric cylinders rotating in different speeds. Due to the input
degeneracy only EM and [3] are compared. b. a cylinder and a cube rotating in the same speed
around different parallel axes. c. A cube and a cylinder rotating around perpendicular axes.
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Fig. 6. Performance of EM for motion segmentation with and without temporal coherence.
Graphs show number of misclassifications as a function of the percentage of missing data. a.
Cube and cylinder rotating around different parallel axes without noise. b. Cube and cylinder
rotating around different parallel axes with noise with standard deviation σ = 0.1.

algorithms give perfect segmentation when there is no noise at all. As the amount of
noise increases, the performance of [3] deteriorates rapidly, while EM-based segmen-
tation continues to succeed for low amounts of noise and shows moderate increase in
the number of errors for larger amounts of noise. It is also clear that EM with temporal
coherence performs significantly better than EM without temporal coherence for noisy
inputs. The algorithms of [5, 17] perform similar to [3] in non-degenerate cases when
the actual rank of observation matrix is provided.

Figure 6 shows the performance of EM with temporal coherence as a function of
the percentage of missing data. While all other factorization algorithms cannot work
with missing data, EM continues to perform well even when 50% of the data is miss-
ing. For comparison, we also show the algorithm of [3] when the observation
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Fig. 7. A real sequence of two cans rotating around different parallel axes. EM with temporal
coherence succeeds in finding correct segmentation and 3D structure reconstruction while other
existing algorithms fail. See text for further details. a. First image from the input sequence with
tracks found by tracking software superimposed. b. First segment, top view. c. Second segment,
top view.

matrix is first filled in using Jacobs’ algorithm [10] and the correct rank is given to all
algorithms.

Finally, we tested the different algorithms on a real sequence of two cans rotating
horizontally around parallel different axes in different angular velocities. 149 feature
points were tracked along 20 frames, from which 93 are from one can, and 56 are from
the other. Some of the feature points were occluded in part of the sequence, due to
the rotation. Notice that despite of its simple appearance, this is a rather challenging
scene because a large percentage of the points are missing and because of the motion
degeneracy: the two cans have “similar” motion, that is rotation around parallel axes,
which leads to a rank deficient motion matrix.

Using EM for motion segmentation, 8 points were misclassified. For comparison,
Costeira-Kanade (using the maximal full submatrix of the measurements matrix) re-
sulted in 30 misclassified points and a failure in 3D structure reconstruction. Figure 7(a)
shows the first frame of the sequence and the tracks superimposed and figures 7(b), 7(c)
show the curved surface of the two cylinders recovered correctly.

5 Discussion

In this paper we have presented an EM algorithm for matrix factorization based on
representing the factorization problem as a problem of factor analysis.

Working with this representation allowed us to (1) handle correlated measurements
noise and missing data, (2) place informative priors on both structure and motion en-
abling 3D reconstruction in scenes where previous methods have failed and (3) impose
constraints on the resulting factors, thereby extending the applicability of factorization
methods to problems such as subspace separation.

It would be interesting to study applications of the enhanced factorization capabili-
ties presented in this paper in other vision problems and in problems taken from other
areas, for example, semantic analysis of texts ([4]).
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A Simple Feature Extraction for High Dimensional
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Abstract. We investigate a method to find local clusters in low dimensional sub-
spaces of high dimensional data, e.g. in high dimensional image descriptions. Us-
ing cluster centers instead of the full set of data will speed up the performance of
learning algorithms for object recognition, and might also improve performance
because overfitting is avoided. Using the Graz01 database, our method outper-
forms a current standard method for feature extraction from high dimensional
image representations.

1 Introduction

One of the key requirements to a modern Cognitive Vision System is a robust perfor-
mance upon changes in illumination, scale, pose etc. For this, modern feature extrac-
tion methods like Lowe’s Scale-Invariant-Feature-Transforms [1] and Mikolajczyk’s
and Schmid’s Scale-Invariant-Harris-Laplace- [2] and Affine-Invariant-Interest-Point-
Detectors [3] come to hand when learning objects or object categories [4, 5]. Opelt
et al. [4] used AdaBoost [6, 7] to generate a combination of weak hypotheses, where
each weak hypothesis consists of a feature vector with a distance threshold. Since the
number of feature vectors is very large, the search for weak hypotheses becomes com-
putationally very expensive. To reduce the computational burden, we want to reduce
the number of candidates for weak hypotheses by clustering. This would reduce learn-
ing time significantly. Furthermore, this promises less overfitting and, eventually, more
accurate classifiers. Note that both, Opelt et al. [4] and Dance et al. [5] use k-means for
that purpose.

Unfortunately, modern descriptors like Lowe’s SIFTs reside in high dimensional
space for which common metrics like the euclidean might be unsuitable [8]. Therefore,
dimensionality reduction techniques such as PCA are commonly applied before cluster-
ing. Nevertheless, if the specific clusters reside in various subspaces such global reduc-
tion techniques may be inappropriate. Recently, projective clustering methods address
this problem by searching for local subspace clusters [9, 10]. Aggarwal et al. [9] deter-
mine the local subspaces through the smallest eigenvectors of each clusters covariance
matrix, whereat the user has to predefine the minimum number of subspace dimensions.
Böhm et al. [10] propose a density connected clustering algorithm, which searches for

� This work was presented in a preliminary version at the First Austrian Cognitive Vision Work-
shop (ACVW 05), Zell an der Pram, January 2005.
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variances below a certain threshold along the attributes to identify subspaces within ε-
neighborhoods of points. Using another parameter, they limit the number of admissible
subspace dimensions from above.

Unfortunately, the number of subspace dimensions is commonly unknown before-
hand. Furthermore, the metrics employed by Aggarwal et al. [9] and Böhm et al. [10]
may deteriorate upon high dimensional subspaces. Therefore, we propose a fast pro-
jective clustering algorithm (FPC), which aims to find axis-parallel subspace-clusters
while determining the number of subspace dimensions automatically. Our approach is
to search for the interval of highest density along all coordinate axes recursively [Sec.
2]. Since our actual goal is feature extraction for learning from high dimensional image
representations the evaluations are twofold. First, we compare our method to k-means
in an unsupervised setting using artificial data [Sec. 3.1]. Then, we evaluate our method
within a boosting frame work, enabling us to directly compare our results to those of
Opelt et al. [4] using k-means [Sec. 3.2].

2 The Clustering Algorithm

Assume that the features reside in IRn. Then the densest interval [a, b] along each co-
ordinate l ∈ {1, ..., n} is calculated. (The details of this calculation are given in the
next section.) For the coordinate with the overall densest interval, all data points with
a corresponding coordinate in this interval are selected and processed by a recursive
application of the algorithm [App. A]. The algorithm terminates if no meaningful dense
intervals can be found. The final result of one iteration of the algorithm is a subspace
cluster defined by the hyper-rectangle of the recursively chosen coordinates and inter-
vals. When such a cluster is found, the data points in this cluster are removed and the
algorithm is restarted for the remaining data. The overall algorithm terminates if no
more clusters can be found.

2.1 Calculating the Densest Interval Along a Single Coordinate

Let x = (x1 ≤ ... ≤ xm) ∈ IR be an ordered dataset with diameter r = maxx−minx.
To calculate the densest interval we assume that the data are drawn from a probability
density function

f (x| a, b) =
1− q

r
+ 1[a,b](x)

q

b − a
(1)

with unknown [a, b] and q, and the indicator function

1[a,b](x) =
{

1, x ∈ [a, b]
0, else

}
(2)

Choosing the parameters which maximize the likelihood of the data we find the desired
interval. Optimizing the log-likelihood LL for q we find

LL (x|a, b) = (m− ξ) · log

(
1− ξ

m

r − (b − a)

)
+ ξ · log

(
ξ
m

b− a

)
(3)
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with ξ = |{x|a ≤ x ≤ b}|. Thus, it remains to select a and b such that LL (x|a, b) is
maximized. Thereby, we restrict ξ as follows.

Viewing clustering as learning an indicator function in an unsupervised setting, we
consult the supervised case to infer a reasonable sample bound. Within the agnostic
learning framework [11, 12] samples (x1, y1), ..., (xm, ym) are drawn randomly from a
joint distribution D over IRn × {1, ...,#classes}, and the learner’s goal is to output a
hypothesis ĥ ∈ H such that for another (x, y) the probability P (ĥ(x) �= y) is almost
that of the best h ∈ H:

IP
[
P
(
ĥ(x) �= y

)
−min

h∈H
P (h(x) �= y) ≤ ε

]
≥ 1− δ (4)

with IP the probability of drawing (x1, y1), ..., (xm, ym). For this setting it has been
shown [13] that one has to sample

m ∼ 1
ε2

(V Cdim(H)− log δ) (5)

data points. That is, even if labels were given, the bounds [a, b] of the interval remain
imprecise by

m · ε = m ·
√

(V Cdim(H)− log δ)/m ≈
√

m (6)

data points compared to the best interval possible. Therefore, it is reasonable to use

smin ≤ ξ ≤ m− smin , (7)

with smin =
√

m, as a validation criterion for a solution [a, b].
This choice of smin guarantees a linear runtime at a maximum level of granularity

when maximizing the Likelihood [Eq. 3] using the following exhaustive search proce-
dure. Let

Φ =
{

ϕ|ϕ =
xi + xi+1

2
, 1 ≤ i ≤ m, xi �= xi+1

}
∪ {minx, maxx} , (8)

where x = (x1 ≤ ... ≤ xm) ∈ IR and ϕ1 < ... < ϕ|φ| ∈ Φ, denote the ordered set of
possible interval bounds. Since an exhaustive search over Φ would require O(m2) steps,
we use the following heuristic search (which might return a suboptimal interval). In a
first phase, we determine a coarse optimal solution by exhaustively searching among the
subset Φ̂ ⊆ Φ of bounds, that pairwise enclose the minimum number smin of points.
Therefore, we denote

Φ̂ = {ϕ̂1 < ... < ϕ̂|Φ̂|} (9)

as the set of coarse bounds ϕ̂ with

ϕ̂1 = min Φ = min(x),
ϕ̂i = min {ϕ | ϕ > ϕ̂i−1, #ϕ ≥ #ϕ̂i−1 + smin} ,

#ϕ = |{x ≤ ϕ}| .
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That is, we start at the lowest possible bound and iteratively define a new coarse bound
after passing smin points. Note, that we allow for the last interval to contain less than
smin data points. Using Φ̂, we get a coarse solution by exhaustive search

(ϕ̂i, ϕ̂j) = argmax
ϕ̂i′<ϕ̂j′

LL(x | ϕ̂i′ , ϕ̂j′ ) (10)

Note, that under the initial assumption of ordered data this computation takes O(m).
Then, in the second phase, we refine the coarse solution at the granular level. Although
the bounds are imprecise according to Equation 6, we are interested in the empirical
maximum of the Likelihood [Eq. 3] and, thus, maximize

(ϕi, ϕj) = arg max
(ϕi′ ,ϕj′ ) ∈ Φϕ̂i×Φϕ̂j

LL(x | ϕi′ , ϕj′ ) (11)

using

Φϕ̂i = {ϕ | ϕ̂i−1 ≤ ϕ ≤ ϕ̂i+1} (12)

Φϕ̂j = {ϕ | ϕ̂j−1 ≤ ϕ ≤ ϕ̂j+1}

as the set of possible bounds around the coarse bounds. Again, the computation takes
O(m) time. Note, that the likelihood for a bimodal distribution is also maximized for
(ϕi, ϕj) enclosing the valley between the two modes. Thus, using

F (a, b, r, m) =
|{x : a ≤ x ≤ b}|

m
· r

b− a
(13)

we select the densest interval (a, b) to

(a, b) = argmax
(a′,b′)

F (a′, b′, r, m) (14)

with (a′, b′) ∈ {(minx, ϕi), (ϕi, ϕj), (ϕj , maxx)}. To further refine the selected in-
terval we rerun the algorithm on the data from it until no further valid subinterval [Eq.
7] can be selected. Consequently, at least smin data points are removed within each
iteration, which yields a total run time of at most O(m3/2).

2.2 Processing High Dimensional Data

Assume the densest interval (a, b) along each coordinate has been calculated [Sec. 2.1]
and let Λ denote the set of all coordinates along which there exists a valid refinement
of the data [Eq. 7]. Thus, we determine the clusters C = {x : al ≤ xl ≤ bl} and
C̄ = X \C by selecting that coordinate l ∈ Λ which holds the densest interval among
all coordinates

l = argmax
l′∈Λ

F (al′ ,bl′ , ρl′ , m) (15)

with ρ the diameter of the full data set. Then, we recurse upon the data in C by re-
calculating (a,b) and Λ until Λ = {}, i.e. there are no more valid coordinates along
which cluster C can be bounded. Consequently, C is stored, and the algorithm [App. A]
restarts upon the remaining data. Finally, the input data is partitioned into a set of sub-
space clusters, whereat each cluster denotes its constituting bounds in their particular
subspace.
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3 Evaluation

3.1 Artificial Data

In a first step, we have evaluated our approach on a artificial 25-dimensional dataset
containing k = 19 axis-parallel clusters C located in 2-dimensional subspaces. We build
the clusters by sampling an increasing number of points {100, 150, ..., 1000} from 25-
dimensional gaussians N (0, σ) with σ = 1 except for 2 randomly chosen dimensions
withσ = 0.1. Furthermore, we added 25% ofuniformly distributed noise within the range
of the data. Let Ĉ denote the clustering obtained from a particular clustering method.

We evaluate the quality of a clustering obtained in terms of how well the known
clusters are covered. Particularly, we assume that every cluster Ĉj belongs exactly to
one cluster Ci and, thus, calculate the coverage

p =

∑
j

|Cτ(j) ∩ Ĉj |∑
j

|Ĉj |

τ(j) = arg max
i

|Ci ∩ Ĉj |

with i = 1, ..., k, j = 1, ..., k̂ and τ = {1, ..., k}k̂.
Unlike k-means, FPC produces a deterministic output upon a certain input. Hence,

we compare our clustering of the data to multiple rounds of k-means, each varying in k̂
and the seeds sampled from the data at random. Figure 1 shows that FPC outperforms
k-means.

Fig. 1. Coverage of real clusters by the clustering found. Left: at zero noise. Right: at 25% noise
level.

3.2 Graz01 Database

Furthermore, we tested our method for image categorization using the Graz01 database1

using LPBoost [14] as learning method. Particularly, we used the 128-dimensional

1 Available at http://www.emt.tugraz.at/~pinz/data/
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SIFTs extracted by Opelt et al. [4] from 300 images of the categories ’bike’ and ’back-
ground’, and retained the SIFTs from 50 images per class for testing. Applying FPC on
the training set, we obtained 459 subspace clusters from about 400000 SIFTs. It turned
out that all clusters were bounded in at most 18 coordinates, indicating the typically
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Fig. 2. ROC-Curve of our method compared to Opelt et al. [4]

Fig. 3. Detected Features. Upper row: The features with minimum distance to the three weak
hypotheses, which have the highest weight (within the ensemble) among all those that triggered
for the particular image. Classification is robust to the objects pose. Lower row: All features with
a distance below the threshold to one of the three weak hypotheses, which have the highest weight
(within the ensemble) among all those that triggered for the particular image.
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low subspace dimensionality observed. Similar to Opelt et al., we calculate the distance
matrix Dk×#images of clusters to images before boosting, where each entry denotes the
minimum distance between a cluster’s center cj and the SIFTs from an image. Unlike
Opelt et al., we do not consider all SIFTs from an image during the calculation of the
distance matrix, but only those that fall into the particular cluster’s subspace bounds,
setting the distance to infinity if there are no such SIFTs.

Using D, LPBoost calls a weak learner within each boosting round to obtain a
optimal weak hypothesis with respect to the current boosting weights. Particularly, a
weak hypotheses is derived from a cluster by sorting the distances Dj,. to its center
and selecting an optimal threshold θj thereupon, such that the sum of the weighted
labels from those images with distance below θj is maximized. See Opelt et al. [4] for
details. Using LPBoost [14] we achieve an 86% ROC-equal error rate (with an area of
0.8968 below the curve) [Fig. 2] on the test set, which outperforms Opelt et al. [4].
Furthermore, only 28 weak hypotheses, having weights greater zero in the ensemble,
contribute to the final hypothesis. Examination of the contributing weak hypotheses
showed that our feature extraction focuses on typical structures like bars, tyres, spokes
and wires. See figure 3 for some detected features. Particularly, the examples show that
classification is robust to variations of the objects pose. Though similar structures may
also be detected in the background of images from the positive class or the negative
class respectively, the final classification remains correct.

4 Discussion

We have presented a new method for feature extraction from high dimensional image
representations. The evaluations approve the viability of our work. Furthermore, gen-
erating weak hypotheses from out FPC is straightforward since each cluster denotes
thresholds in various subspaces of the data. The final ensemble is sparse and outper-
forms results from earlier work. Hence, overfitting is limited and generalisation perfor-
mance is improved. Therefore, feature extraction using FPC should be tried out on other
applications involving high dimensional data to check if the results translate.
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A The Algorithm

Algorithm 1 - Fast Projective Clustering (FPC)
procedure fpc(C, smin)
% Input: data set C ∈ IRm×n, minimum support smin

% Output: clustering C

ρ = maxC − minC
while C is not empty do

repeat
[C, C̄] = addBounds(C, smin, ρ)

until C is not refined
C = C ∪ {C}
C = C̄

end while
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procedure selectDensestInterval(C, ϕi, ϕj , l)
% Input: cluster C ∈ IRm×n, bounds (ϕi, ϕj), coordinate l
% Output: data C from densest interval with bounds (a, b), separated data C̄

r = maxCl − minCl

Φi × Φj = {(minCl, ϕi), (ϕi, ϕj), (ϕj , maxCl)}
(a, b) = arg max

(a′,b′)∈Φi×Φj

F (a′, b′, r, m)

C, C̄
(a,b)
← C

procedure addBounds(C, smin, ρ)
% Input: initial cluster C ∈ IRm×n, minimum support smin, diameter ρ of the data set
% Output: refined cluster C with new bounds (a, b) along coordinate l, separated data C̄

Λ = {}
for l = 1 to n do

C′ = C
valid = true
while valid do

[ϕi, ϕj ] = optimalBounds(C′, smin, l)
[C′, C̄′, a, b] = selectDensestInterval(C′, ϕi, ϕj , l)
valid = (|C′| ≥ smin) ∧

(
|C̄′| ≥ smin

)
if valid then

Λ = Λ ∪ l
al = a
bl = b

end if
end while

end for
if Λ is not empty then

l = arg max
l′∈Λ

F (al′ ,bl′ , ρl′ , m)

C, C̄
(al,bl)← C

end if
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procedure optimalBounds(C, smin, l)
% Input: cluster C ∈ IRm×n, minimum support smin, coordinate l
% Output: optimal bounds ϕi, ϕj maximizing the Likelihood

x = sort(Cl)
r = maxx − minx
if r = 0 then

ϕi = minx
ϕj = maxx
return

end if
Φ = {ϕ|ϕ = xi+xi+1

2 , 1 ≤ i ≤ m, xi �= xi+1} ∪ {minx, maxx}
Φ̂ = {ϕ̂1 < ... < ϕ̂|Φ̂|} with

ϕ̂1 = min(x),
ϕ̂i = min {ϕ | ϕ > ϕ̂i−1, #ϕ ≥ #ϕ̂i−1 + smin} ,
#ϕ = |{x ≤ ϕ}|

(ϕ̂i, ϕ̂j) = arg max
ϕ̂i′<ϕ̂j′

LL(x | ϕ̂i′ , ϕ̂j′)

Φϕ̂i = {ϕ | ϕ̂i−1 ≤ ϕ ≤ ϕ̂i+1}
Φϕ̂j = {ϕ | ϕ̂j−1 ≤ ϕ ≤ ϕ̂j+1}
(ϕi, ϕj) = arg max

(ϕi′ ,ϕj′ ) ∈ Φϕ̂i×Φ
ϕ̂j

LL(x | ϕi′ , ϕj′)
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Abstract. It is known that feature selection and feature relevance can
benefit the performance and interpretation of machine learning algorithms.
Here we consider feature selection within a Random Forest framework. A
feature selection technique is introduced that combines hypothesis test-
ing with an approximation to the expected performance of an irrelevant
feature during Random Forest construction.

It is demonstrated that the lack of implicit feature selection within
Random Forest has an adverse effect on the accuracy and efficiency of
the algorithm. It is also shown that irrelevant features can slow the rate
of error convergence and a theoretical justification of this effect is given.

1 Introduction

Ensemble algorithms have achieved success in machine learning by combining
multiple weak learners to form one strong learner. The Adaboost algorithm [1]
and the Bagging algorithm [2] are two examples of this. These methods centre
around the idea of diversity in the base learners, which enable good exploration
of possible hypotheses. The Random Forest technique [3], exploits this idea by
adopting the randomisation principle of [4] to achieve an increase in diversity.
The base learners in this algorithm are decision trees and use information gain
as the criterion to split each node. These trees usually perform a search through
a large number of possible binary splits for every feature in order to find the
optimal split for each node. The Random Forest algorithm uses Bagging to
generate a training set for each tree. Diversity is injected into the ensemble by
choosing a feature randomly at each node in the tree construction and optimising
the split over a set of possible split values along that feature. It is demonstrated
here that the lack of implicit feature selection within Random Forest can result
in a loss of accuracy and efficiency if irrelevant features are not removed, and a
theoretical explanation is given for slower convergence.

Due to the random exploration of features, Random Forest lends itself to
feature selection well and the measure of feature importance adopted here is
the average information gain achieved during forest construction. It is possible
to approximate the expected performance of an irrelevant feature when using
this measure, [5]. A feature selection technique is introduced here that combines
hypothesis testing with this method and it is empirically shown to achieve good
algorithm performance and dimensionality reduction.
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2 Irrelevant Features and Random Forest

The Random Forest algorithm makes no distinction between the relevance of
features during construction of the forest. As the features are selected randomly
with equal probability at each node, the performance can suffer significantly
from the presence of irrelevant features. Standard decision tree algorithms will
select the optimal feature at each split, in terms of maximal information gain. As
Random Forest lacks this implicit feature selection, the probability of selecting
an irrelevant feature increases with the proportion of irrelevant features present.
These irrelevant features can then mislead the algorithm and increase the gen-
eralisation error. Also, as irrelevant features are not effective at separating the
data, they can result in unnecessarily large trees and therefore, an increased
computational load.

An explanation for the effect of irrelevant features on the Random Forest
algorithm can be found by considering the space of possible hypotheses. One of
the explanations for how ensemble methods work centres around the concept of
the margin. The margin for example x, with label y, is the difference between
the probability of correct classification and the probability that it belongs to the
next most likely class. For binary classification, the margin is simply,

marg (x, y) = 2Pθ (h (x, θ) = y)− 1, (1)

where θ represents the space of possible hypotheses.
The probability of classifying a data point correctly converges to either 1 or

0 depending on the sign of the margin and [3] uses the law of large numbers to
prove that the misclassification rate of an ensemble, H , converges asymptotically
to the probability over the input space of obtaining an example with a negative
margin. However, for a finite number of hypotheses, n, the probability of correct
classification is given by the probability that the majority of the ensemble is
correct. This is the probability that at least !n/2" of the base learners predict
the correct class,

P [H (x) = y] =
n∑

i=�n/2�
(Pθ [h (x, θ) = y])i (1− Pθ [h (x, θ) = y])n−i

(
n
i

)
(2)

As more base hypotheses are added to the ensemble, the error rate converges
in line with this function. Therefore, the speed of convergence can be increased
by increasing the size of the margin. For Random Forest, the diversity within
the base hypotheses is introduced through the combination of bagging, which
trains the hypothesis on a random subset of the training data and random input
selection [6]. The space of possible base hypotheses is affected by the set of
features chosen to represent the data. As a consequence of this, feature selection
can alter the margin values of the data. Ideally, this should result in fewer data
points having a negative margin and therefore, allow the algorithm to converge
to a smaller error rate. But, it also has the ability to increase the size of the
margin values and result in faster convergence. Therefore, fewer trees may be
needed, which lowers the computational requirement.
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3 Identifying Feature Relevance

Many algorithms exist to identify the relevance of different features in terms of
how useful they are in predicting the target. Typically, a trade-off is performed
between the accuracy of the procedure and the speed of execution. One simple
and fast approach to this problem, is to assume that if a feature provides predic-
tive information concerning the target, then a significant degree of correlation
will exist between these variables. Therefore, some algorithms calculate some
measure of correlation between individual features and the target, to identify
relevant features [7].

Some information can be shared between features and it is beneficial if these
redundant features are removed, as the information is only required once. Some
algorithms record measures of correlation between pairs of features to identify
redundancy and alleviate this problem [7], [8], [9].

The measures of correlation can vary between the standard linear correla-
tion, which is limited to only identifying linear correlations in the data, and
measures from information theory such as information gain, conditional entropy
and symmetrical uncertainty. These correlation-based methods have proved use-
ful for some data, however, there are limitations with these types of technique.
Although a significant degree of correlation between variables is indicative that
they share information, it does not follow that for variables which share infor-
mation there will exist a significant degree of correlation. Interaction can occur
between features that can mask relevance and redundancy to correlation-based
methods. An extreme example of this is the parity (XOR) problem.

Example 1. If the target, Y is given by the exclusive OR of the binary features,
X1 and X2, then Y is fully described by the features and they are both relevant.

Y = X1 ⊕X2

However, if each feature assumes the values of 1 or 0 with equal probability, then
each feature will have a very low degree of correlation to target. This is because
knowing the value of one of the features gives no information about the target
without knowing the value of the other feature.

In order to account for this interaction, it is necessary to examine feature
subsets rather than individual features. This concept is adopted in the definitions
of strong and weak relevance, [10], which deem features to be relevant when
considered in the context of other features.

3.1 Random Forest for Feature Selection

An effective feature selection algorithm should evaluate subsets of features rather
than individuals. The Random Forest algorithm builds a large number of sim-
ple classifiers using randomly chosen features and therefore, achieves a good
exploration of possible feature subsets. Also, because Bagging is employed as
an integral component of the algorithm, not all of the training data is included
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in the construction of each of the base hypotheses. This out-of-bag data then
enables evaluation of the feature subsets without the need for an independent
test set. For these reasons, Random Forest lends itself to feature selection well.

A method for identifying feature relevance using RF was given [3], by exam-
ining an estimate of the test error through the out-of-bag data. The estimate of
feature importance is obtained through permuting the values of the feature along
all of the examples and observing the effect on the estimate of generalisation er-
ror. This method can be used for feature selection [11], however, it is suggested
[12], that the method is computationally expensive for high dimensional data and
that it is necessary to apply a pre-processing technique that examines the indi-
vidual performance of each feature. However, this pre-processing can eliminate
features with strong interaction.

At each node in the construction of a Random Forest, a feature is selected
randomly and used to split the node and maximise the information gain. This
information gain can be used as a measure of correlation between the feature
and the class. These measures of feature importance can be used to increase
performance of the learning algorithm [13]. Although these measures appear
to be simpler forms of information gain, there are some benefits to using this
method over standard information gain. Each terminal node in a decision tree
can be viewed as a learner that has been trained on the features that were used in
the path from the root. Consequently, the information gain values are not simply
measures of the individual feature performance but measures of the ability of
the feature in a variety of possible feature subsets. This enables the algorithm
to explore the local relevance of each of the features [14], and can allow for
relationships within the data. The reliability of this method can be improved by
weighting the observed information gain values with a node complexity measure
[5]. The advantage of this, as a technique for feature selection, over the random
subspace method [6], is that multiple feature subsets can be evaluated within an
individual learner, thus yielding a more efficient subset exploration.

4 A Feature Selection Threshold

It is conjectured that the average information gain during the construction of a
Random Forest is a measure of feature relevance. As previously discussed, it tests
the feature on different areas of the input space and consequently accounts for the
different relationships between features. If these measures of feature importance
are applied to learning algorithms which are based on decision trees, it also
contains the bias of the learning algorithm. In order to use these measures for
feature selection, the ability of an irrelevant feature needs to be established. It
is not trivial to calculate the expected information gain created by the splitting
of a node, when the data is randomly ordered. It depends upon node size and
constitution.

Upper and lower bounds for the expected information gain of an irrelevant
feature, E [IG], can be established for the splitting of a node of size, n, by
considering the different extremes of constitution [5]. This method considers the
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different arrangements that could result from the data within a given node being
projected onto an irrelevant feature. The assumption that is made here is that
no data points lie on top of one another and all of the possible split positions are
realisable. However, the Random Forest algorithm uses Bagging, which samples
the data with replacement to form different sets from which to construct the base
learners. As a result of this some data points are selected multiple times and will
consequently lie on top of one another. This limits the possible arrangements
and results in a higher observed information gain. To account for this, Bagging
is performed as usual to form a sample of the training data and then the multiple
instances are removed. For the case when the node being split only contains one
example of one of the classes, the node constitution is most unbalanced and gives
the lower bound,

E [IG] ≥ 1
n
− n− 1

n
log2

n− 1
n

(3)

For the case when the node constitution is most balanced and there are equal
numbers of each class, an upper bound can be approximated,

E [IG] ≤
(n

2

)−0.82
(4)

The mid-point between these two bounds represents a reasonable estimate
of E [IG] for the splitting of a node of size n.

4.1 Hypothesis Testing

The approximated value E [IG], is assumed to be the worst case performance of
any feature when splitting the node in question. If a feature is irrelevant then the
observed value IG, should approximate E [IG]. The measure of feature impor-
tance is the average of the observations IG, and the feature selection threshold
is the average of the corresponding values of E [IG]. However, as the technique
uses a sample to estimate these values, there is still a good chance that irrelevant
features may be chosen. Hypothesis testing can be employed here to discover the
degree of confidence of feature relevance. A t-test is adopted here because of its
simplicity, although natural alternatives exist which may yield more favourable
results. Following the construction of a Random Forest, each feature has a set
of observed information gain values and a corresponding set of values that ap-
proximate the performance of an irrelevant feature. If the feature is irrelevant,
then these values should approximate one another. The variable that is used
here is then the difference between these values and is assumed to have a normal
distribution.

IGdiff = IG− E [IG] (5)

The thresholding method is then equivalent to rejecting the feature if the ob-
served mean of this variable, IGdiff , is less than or equal to zero.

A null hypothesis,H0, can then be set up to represent an irrelevant feature
by assuming that the true mean of IGdiff , defined as μ, is less than or equal to
zero.

H0 : μ ≤ 0 (6)
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The alternate hypothesis, Ha, must be the complement of this.

Ha : μ > 0 (7)

The null hypothesis can then be rejected if the corresponding likelihood is less
than some confidence value, γ. If IGdiff is less than 0 then the null hypothesis
cannot be rejected. However, if it is greater than zero then a one tailed t test can
be performed, where the null hypothesis can be rejected with confidence 1−γ if,

IGdiff − μ
S√
n

> q (8)

Where n is the sample size and S is the standard deviation of the sample. The
left hand side of this inequality is a variable which has a Student’s t distribution
with n−1 degrees of freedom. The cumulative density of this distribution at the
value q represents the likelihood of the null hypothesis being valid. If this value
is less than γ then the null hypothesis is rejected and the feature is deemed to
be relevant. Equation 8 simplifies to,

IGdiff
√

n

S
> q (9)

It is important to note that while this method will identify features that are
relevant with some degree of confidence, the relevance of the remaining features
will be unknown. Therefore, as a feature selection technique, this method may
discard some relevant features. Another important consideration is that although
features are selected if there exists a certain degree of confidence that the fea-
ture is relevant, when examining many features some irrelevant features will be
selected by chance. The expected number of these is given by the product of the
data dimensionality F and the confidence threshold γ.

5 Experiments

5.1 Datasets

Five real data sets are used for these experiments. The Wisconsin Breast Cancer
(WBC), Pima Diabetes, Sonar, Ionosphere and Votes are available from the UCI
Repository [15].

An artificial dataset called Simple is also created, which consists of 9 features
and 300 examples. The output is generated according to the function,

Y = X2
1 + 2X2 (10)

The remaining seven features are irrelevant and consequently this data set should
benefit significantly from feature selection algorithms. It is important to note
that as the input values to the function are drawn from a uniform distribution
on [0, 1]9, feature 2 has a larger influence on the target.



Identifying Feature Relevance Using a Random Forest 179

The Friedman dataset, [16] is another artificial dataset data set that is de-
signed for testing feature selection algorithms. It is generated according to the
following formula and also contains 5 irrelevant features. It has been thresholded
in order to convert it into a binary classification problem and a threshold value
of 14 was chosen to yield a reasonably balanced data set.

Y = 10 sin (πX1X2) + 20
(

X3 −
1
2

)2

+ 10X4 + 5X5 + N (0, 1.0) (11)

Another synthetic data set considered here is the Madelon dataset, which
was used in the NIPS 2003 Feature Selection Challenge and consists of 2000
examples and 500 features. [17].

5.2 Irrelevant Features and Random Forest

To demonstrate the effect of irrelevant features on Random Forest, the five real
data sets are tested with various numbers of additional random features, gen-
erated from a uniform distribution. The number of irrelevant features is varied
between 0 and 30. For each experiment, the data sets are randomly partitioned
into 90% for training and 10% for testing. 100 trees are constructed to form the
forest and classify the test data. This is repeated over 100 trials and the results
for the extreme cases of 0 and 30 irrelevant features are shown in Table 1.

Table 1. Error rates and average tree sizes in Random forest for 0 and 30 irrelevant
features. Values in brackets for the error rates are the corresponding variances.

Data Set Error(0) Av. Tree Size(0) Error(30) Av. Tree Size(30)
WBC 0.0296(0.0003) 59.0 0.0328(0.0004) 165.0
Pima 0.2487(0.0015) 239.0 0.3004(0.0030) 274.6
Sonar 0.1657(0.0068) 69.6 0.2124(0.0083) 75.5

Ionosphere 0.0856(0.0019) 47.6 0.0942(0.0022) 75.0
Votes 0.0705(0.0013) 50.7 0.1009(0.0017) 122.9

Figure 1 shows how the error rates increase steadily, as more irrelevant fea-
tures are added to the data and Figure 2 demonstrates how the average tree size
also increases with the presence of irrelevant features. It is important to note
that in some cases the error rate does not increase as rapidly, because there is
sufficient data to allow the trees to grow larger and compensate. This increase
in tree size is undesirable as it increases the computational load.

5.3 Feature Selection Thresholding

The expected information gain of an irrelevant feature is approximated at each
node of forest construction by the mid-point of the two bounds, given by
Equations 3 & 4. This represents the ability of a feature that contains no useful
information concerning the target and can be used as a feature selection thresh-
old. Hypothesis testing can also be used as an extension to this by including
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Fig. 1. Error rates of Random Forest on five real data sets with varying numbers
of additional irrelevant features. Error bars have a width of one standard deviation
recorded over 100 trials.
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Fig. 2. Average tree sizes created by Random Forest on five real data sets with varying
numbers of additional irrelevant features. Error bars have a width of one standard
deviation recorded over 100 trials.

only the features that were considered relevant with some degree of confidence.
In each experiment, 100 trees are constructed to obtain the average information
gain for each feature, using the node complexity measure of [5]. Along with these
estimates of feature importance, the corresponding approximations for the per-
formance of an irrelevant feature are also calculated. This information is then
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used to select a subset of the features and a further 100 trees are constructed
based on this subset. Again, the data is partitioned into 90% training and 10%
testing and the experiment is repeated over 100 trials. These techniques are com-
pared against RF without feature selection and the CFS algorithm of [9], which
is a correlation-based method. The observed error rates are shown in Table 2
and the average number of features selected are shown in Table 3. Table 2 also
contains the error rates for the methods when given the previous data sets with
30 additional irrelevant features.

The CFS algorithm performs significantly better on the Votes data set, as
this contains a large proportion of redundant features. However, the CFS al-
gorithm significantly degrades performance on a number of data sets as it can
eliminate relevant features. It can be seen that using the expected information
gain of an irrelevant feature performs well on most data sets and even those
where the accuracy is degraded slightly, the dimensionality is greatly reduced.

Table 2. Error rates for RF when using different feature selection strategies. Without
feature selection (standard RF), the CFS algorithm (CFS) and using the expected
information gain of an irrelevant feature for thresholding (RF Thr) and with hypothesis
testing (RF HT).

Data Set Standard RF CFS RF Thr RF HT
WBC 0.0296(0.0003) 0.0272(0.0003) 0.0243(0.0003) 0.0270(0.0003)

WBC(+30) 0.0328(0.0004) 0.0272(0.0003) 0.0239(0.0003) 0.0225(0.0003)
Pima 0.2487(0.0015) 0.2596(0.0028) 0.2456(0.0023) 0.2388(0.0021)

Pima(+30) 0.3004(0.0030) 0.2596(0.0028) 0.2961(0.0031) 0.2594(0.0026)
Sonar 0.1657(0.0068) 0.2271(0.0068) 0.1638(0.0086) 0.1748(0.0071)

Sonar(+30) 0.2124(0.0083) 0.2271(0.0068) 0.2019(0.0091) 0.1833(0.0070)
Ionosphere 0.0856(0.0019) 0.0581(0.0014) 0.0714(0.0019) 0.0767(0.0011)

Ionosphere(+30) 0.0942(0.0022) 0.0581(0.0014) 0.0772(0.0020) 0.0764(0.0018)
Votes 0.0705(0.0013) 0.0498(0.0010) 0.0650(0.0013) 0.0652(0.0013)

Votes(+30) 0.1009(0.0017) 0.0498(0.0010) 0.0695(0.0012) 0.0684(0.0015)
Friedman 0.1740(0.0075) 0.1795(0.0073) 0.1530(0.0078) 0.1340(0.0049)
Simple 0.0820(0.0024) 0.1917(0.0041) 0.0613(0.0019) 0.0393(0.0014)

Table 3. Proportions of features used with different feature selection strategies. With-
out feature selection (standard RF), the CFS algorithm (CFS) and using the expected
information gain of an irrelevant feature for thresholding (RF Thr) and with hypothesis
testing (RF HT).

Data Set CFS RF Thr RF HT
WBC 8.65(96.1%) 9.00(100.0%) 9.00(100.0%)
Pima 3.10(38.8%) 4.00(50.0%) 4.00(50.0%)
Sonar 13.85(23.1%) 58.28(97.1%) 44.20(73.7%)

Ionosphere 14.38(42.3%) 32.79(96.4%) 32.56(95.8%)
Votes 1.00(6.3%) 12.91(80.7%) 12.60(78.8%)

Friedman 3.05(30.5%) 7.99(79.9%) 5.80(58.0%)
Simple 1.00(11.1%) 6.80(75.6%) 4.17(46.3%)
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Hypothesis testing is also shown to be beneficial as it enables further dimen-
sionality reduction. For the data sets with the additional irrelevant features, the
improvement created by the feature selection techniques over the standard Ran-
dom Forest is clearly visible. CFS correctly removes all of the irrelevant features
as they have no perceivable correlation to the target whilst the Random Forest
methods include some of them but manage to remove most.

The accuracy of the RF HT method is dependent upon the number of trees
that were constructed to form the estimates of the average information gain for
each feature. It is also dependent upon the level of confidence used. Here the
Madelon data set [17], is employed as it is already separated into a training and
validation set. 10,000 trees are constructed on the training set to form estimates
for the average information gain. The confidence level can then be varied to alter
the features that are selected. These features are then used to represent the data
and a further 1000 trees are constructed on the training set in order to test the
validation set. The results are shown in Table 4.

Table 4. Effect of applying feature selection technique to Madelon data set and varying
confidence level. The validation set error and the Out-of-Bag estimate of test error
(OOB Est.) is shown.

Confidence Error OOB Est. #Features Av. Tree Size
0.05 0.3550 0.3805 257 920.9
0.025 0.3783 0.3675 232 916.4
0.01 0.3483 0.3620 196 912.3
0.001 0.3483 0.3320 130 898.5
0.0001 0.3300 0.2845 82 876.6
10−6 0.2583 0.2400 52 837.5
10−9 0.1867 0.1700 30 766.0

As the confidence level is lowered, it becomes more difficult to reject the null
hypothesis and deem features to be relevant. The Out-of-Bag estimate of test
error is gained through testing each training point on the subset of the forest
where it was not included in the bagged set. It does not use the test data and
can therefore, be used to optimise the confidence level.

5.4 Error Convergence

The effect of feature selection on the error convergence rate can be tested by
calculating the error as each tree is added to the forest. This is demonstrated
here using the Madelon data set. Two Random Forests are constructed, one
using all of the features and one using the features selected by RF HT with a
confidence level of 0.05. The results are averaged over 100 trials and shown in
Figure 3.

It can clearly be seen that after 100 trees have been added to the forest, the
error has not yet converged when all of the features are present. However, when
the feature selection scheme is used, the algorithm is very close to convergence.
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Fig. 3. Comparison of error convergence for Madelon with RF. Solid line shows con-
vergence without feature selection. Dashed line shows convergence with RF HT and
confidence level of 0.05.

6 Discussion

The Random Forest algorithm has been shown to suffer significantly here with
the presence of irrelevant features. The lack of implicit feature selection within
the algorithm allows irrelevant features to be used and consequently, reduces the
accuracy. Irrelevant features have also been shown to increase the sizes of the
resultant trees and if there is sufficient data the algorithm can compensate, to
some extent, by allowing the trees to grow larger. However, larger trees represent
an increased computational load and are undesirable. Another reason for the use
of feature selection with RF is the effect that irrelevant features have on the error
convergence rate. This has been demonstrated here and explained through the
concept of the margin.

The average information gain achieved during Random Forest construction
achieves good identification of feature relevance by evaluating subsets of fea-
tures. A feature selection technique has been introduced, which approximates
the expected performance of an irrelevant feature when using this measure and
employs hypothesis testing to select relevant features with a degree of confi-
dence. This method is shown to work well in terms of improved accuracy and
dimensionality reduction.
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Abstract. We present a method which uses example pairs of equal
or unequal class labels to select a subspace with near optimal metric
properties in a kernel-induced Hilbert space. A representation of finite
dimensional projections as bounded linear functionals on a space of
Hilbert-Schmidt operators leads to PAC-type performance guarantees
for the resulting feature maps. The proposed algorithm returns the pro-
jection onto the span of the principal eigenvectors of an empirical op-
erator constructed in terms of the example pairs. It can be applied to
meta-learning environments and experiments demonstrate an effective
transfer of knowledge between different but related learning tasks.

1 Introduction

Humans can use the experience accumulated during previous learning efforts to
learn novel but related tasks more efficiently, often generalizing well on the basis
of a single training example (see e.g. [13]).

Here we present a machine learning algorithm designed to imitate aspects
of this behaviour. It attempts to represent input data in a Euclidean space,
such that the metric relations between the represented data points match se-
mantic relations of their class labels. The most elementary semantic relations
are equality and inequality, often called equivalence constraints, and matching
these means that pairs of equally labelled input points should be mapped close
to each other, while pairs of differently labelled points should be separated. To
train the representing feature map such equivalence constraints can be sampled
from environments encompassing many individual learning tasks. If the semantic
match is good on the training data and the feature map generalizes well, then
we can expect that for any - possibly novel - learning task in the environment,
a classifier thresholding the distance to a single training example will have good
performance.

Similar methods have received some attention recently, both from the per-
spective of machine learning ([16],[3]) and cognitive science ([6]). Our approach
is motivated by a distribution-independent analysis of the generalization perfor-
mance of elementary classifiers in a meta-learning environment. The proposed
algorithm is a subspace selection technique which can be regarded as a hyperbolic
extension of PCA. It utilizes both positive (equal labels) and negative (different
labels) equivalence constraints.

C. Saunders et al. (Eds.): SLSFS 2005, LNCS 3940, pp. 185–197, 2006.
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The method has been tested in various domains of image recognition: Hand-
written characters, rotation and scale invariant character recognition and the
recognition of human faces. In all these cases the representations trained on one
learning task resulted in a considerable performance improvement for small-sample
nearest neighbour classifiers on related tasks.

The next section introduces metric threshold classifiers and corresponding
risk functionals for general metric representations. Section 3 presents a proba-
bilistic model for the generation of equivalence constraints. Section 4 specializes
to the representations considered by our algorithm and gives a high probability
generalization guarantee in terms of the empirical properties of a representation.
Section 5 is devoted to the proof of this theorem and section 6 discusses some
details of our algorithm. Some experimental results are presented in section 7.

2 Risk Functionals for Metric Representations

Suppose that E is an environment of learning tasks with common input space
X (see Baxter [4]). This means that E is a probability distribution on a space
of learning tasks {(Y, μ)} , where each Y is an alphabet of labels, and each μ is
a probability distribution on X × Y, μ (x, y) being the probability to encounter
the pattern x carrying the label y in the context of the task (Y, μ).

We now define a performance measure for metric representations of X in
terms of the expected performance of elementary threshold classifiers. Suppose
Φ : X → Φ (X ) is such a representation in a metric space (Φ (X ) , d), where
we assume the diameter of Φ (X ) to be bounded by 1. Consider a learning task
(Y, μ) and a single training example (x, y) ∈ X × Y. A classifier trained on this
example alone and applied to another pattern x′ ∈ X can sensibly only make
the decisions ”x′ is of type y” or ”x′ is not of type y” or no decision at all. Face
recognition is an environment where such classifiers can be quite important in
practice: A police officer having to verify the identity of a person on the basis of
a single passport photograph has to learn and generalize on the basis of a single
example image. A simple classifier using only the metric representation is the
threshold classifier εc (x, y) which decides

x′ is of type y if d (Φ (x) , Φ (x′)) < c
undecided if d (Φ (x) , Φ (x′)) = c

x′ is not of type y if d (Φ (x) , Φ (x′)) > c
,

where c is some distance threshold c ∈ (0, 1). Relative to the task (Y, μ) this
classifier has the error probability (counting ’undecided’ as an error)

err (εc (x, y)) = Pr
(x′,y′)∼μ

{rY (y, y′) (c− d (Φ (x) , Φ (x′))) ≤ 0} ,

where the function rY : Y × Y → {0, 1} quantifies equality and inequality in Y:

rY (y, y′) =
{

1 if y = y′

−1 if y �= y′ .
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The expected value of err(εc (x, y)), as a task (Y, μ) is selected randomly from
the environment E and a training example (x, y) is chosen from μ, is

R (Φ, c, E) = E(Y,μ)∼E

[
E(x,y)∼μ

[
Pr

(x′,y′)∼μ
{rY (y, y′) (c− d (Φ (x) , Φ (x′))) ≤ 0}

]]

The quantity R (Φ, c, E) is a measure of the risk associated with the metric
representation Φ, the assumed threshold c and the environment E . Optimization
with respect to c gives the threshold independent risk functional1

R (Φ, E) = inf
c∈(0,1)

R (Φ, c, E) . (1)

Our algorithm will seek a metric representation Φ with a small value of R (Φ, E)
where Φ (X ) is isometrically embedded in R

d. Any bound on R (Φ, E) is then also
a bound on the expected error of threshold classifiers. This is the theoretical jus-
tification of the risk functional R, but it does not imply that we are constrained
to use the simple and functionally limited threshold classifiers: Any machine
learning algorithm applicable to labelled vectors in R

d (e.g. NN or SVM) can be
used on the data which has been preprocessed by Φ.

3 Equivalence Constraints

A triplet (x, x′, r) ∈ X 2 × {−1, 1} is called an equivalence constraint ([3],[6]).
Given an environment E we define a probability measure ρE on X 2×{−1, 1} by
the formula

ρE (A) = E(Y,μ)∼E

[
Pr

((x,y),(x′,y′))∼μ2
{(x, x′, rY (y, y′)) ∈ A}

]
forA ⊆ X 2×{−1, 1}.

To draw an equivalence constraint (x, x′, r) from ρE we first draw a task (Y, μ)
from E , and then make two independent draws from μ to generate the pair
((x, y) , (x′, y′)) ∈ (X × Y)2. If y = y′ we set r = 1 else we set r = −1. We then
have

R (Φ, c, E) = Pr
(x,x′,r)∼ρE

{r (c− d (Φ (x) , Φ (x′))) ≤ 0} . (2)

The measure ρE is itself unknown to our algorithm, which instead has to rely
on a training sample S = ((x1, x

′
1, r1) , ..., (xm, x′

m, rm)) ∈
(
X 2 × {−1, 1}

)m of
m equivalence constraints generated in m independent, identical trials of ρE
according to the above procedure, i.e. S ∼ (ρE)m.

The specific way in which the measure ρE was generated served to derive and
motivate the risk functional R and is otherwise irrelevant to most of our analysis.
We only require a probability measure ρ on X 2 × {−1, 1} and risk functionals
R as defined by (2) and (1). There are other interesting ways to generate such
1 If ’undecided’ was not counted as an error, this infimum would always be attained

for some distance threshold c∗ ∈ [0, 1], which can be regarded as a granularity of the
metric representation.
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measures: As pointed out by Bar-Hillel et al ([3]), equivalence constraints can
be generated in an unsupervised way by observing a video sequence, regarding
image pairs taken at similar times as positive and pairs at very different times
as negative constraints. We will therefore axiomatically postulate the existence
of the measure ρ, dropping the subscript which indicated the dependence on the
environment E . We also write R (Φ, c, E) = R (Φ, c, ρE) and R (Φ, E) = R (Φ, ρE).

Another important issue here is balancing. If the alphabets in E are large,
with their symbols appearing approximately equally likely, then negative equiv-
alence constraints will be sampled much more frequently than positive ones,
resulting in a negative bias of elementary classifiers. This unwanted effect has
been noted in [16] and [3]. A simple remedy is to define a new measure ρ̄E by

ρ̄E (A) =
ρE (A ∩ {1})
2ρE (X ∩ {1}) +

ρE (A ∩ {−1})
2ρE (X ∩ {−1}) for A ⊆ X 2.

Then positive and negative equivalence constraints occur equally likely as mea-
sured by ρ̄. The risk R (Φ, c, ρ̄E) relative to ρ̄E is often more relevant than
R (Φ, c, ρE). Since our bounds will be valid for any probability measure ρ on
X 2 × {−1, 1} they will also work with ρ̄E as long as we remember that the
training sample S is also drawn from the modified measure S ∼ (ρ̄E)m.

4 Generalization Bounds for Subspace Selection

Our technique is related to kernel-PCA (see [10], [14]): It requires some fixed
map ψ : X → H to embed the input data in a Hilbert space H . In practice the
embedding ψ is realized by a positive definite kernel κ on the input space which
maps onto the inner product 〈., .〉 in the Hilbert space H (see [5]). For our results
we generally require ‖ψ (x) − ψ (x′)‖ ≤ 1 for all inputs x and x′, and we assume
H to be infinite dimensional. On the basis of the training set S a d-dimensional
orthogonal projection P on H is selected. The combined map of embedding and
projection Φ = P ◦ ψ is then used as a metric representation for future data.
Since ψ is fixed and P is completely determined by its range, our algorithm can
also be considered a subspace selection technique.

In the following we fix the Hilbert space H and simply write x instead of
ψ (x), identifying X with its image ψ (X ) ⊂ H under the kernel-map. When
we discuss details of our algorithm we bring ψ back into play. It is crucial that
diam(X ) ≤ 1.

For subspace selection the risk functionals in (2) and (1), which now depend
on the projection P , read as

R (P, c, ρ) = Pr
(x,x′,r)∼ρ

{r (c− ‖P (x− x′)‖) ≤ 0}

R (P, ρ) = inf
c∈(0,1)

R (P, c, ρ) .

To write down a sample dependent bound on R we introduce for γ > 0 the
margin functions
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fγ (t) =

⎧⎨
⎩

1 if t ≤ 0
1− t/γ if 0 < t < γ

0 if γ ≤ t

and the empirical margin error R̂γ for a sample S =((x1, x
′
1, r1) , ..., (xm, x′

m, rm))
∈
(
X 2 × {−1, 1}

)m, a threshold c > 0 and a d-dimensional projection P

R̂γ (P, c, S) =
1
m

m∑
i=1

fγ

(
ri

(
c2 − ‖P (xi − x′

i)‖
2
))

.

Recent results on large margin classifiers (Kolchinskii and Panchenko [7], Bartlett
and Mendelson [1]), combined with a reformulation in terms of Hilbert-Schmidt
operators give the following:

Theorem 1. Fix γ > 0. For every δ > 0 we have with probability greater than
1− δ in a sample S drawn from ρm, that for every d-dimensional projection P

R (P, ρ) ≤ inf
c∈(0,1)

R̂γ (P, c, S) +
1√
m

⎛
⎝2

(√
d + 1

)
γ

+

√
ln (1/δ)

2

⎞
⎠ .

In addition to the empirical error the bound shows an estimation error, de-
creasing as 1/

√
m which is usual for this type of bound. The estimation error

contains two terms: The customary dependence on the confidence parameter δ
and a complexity penalty consisting of 1/γ (really the Lipschitz constant of the
margin function fγ), and the penalty

√
d on the dimension of the representing

projection.
We will outline a proof of a more general version of this theorem in the next

section.

5 Operator-Valued Linear Large-Margin Classifiers

In this section we rewrite finite dimensional projections and more general feature
maps as operator valued large-margin classifiers, and use this formulation to
prove a more general version of Theorem 1. We will use the following general
result on linear large margin classifiers (Kolchinskii and Panchenko [7], Bartlett
and Mendelson [1]):

Theorem 2. Let (Ω, μ) be a probability space, H a Hilbert space with unit ball
B1 (H) and (w, y) : Ω → B1 (H)× {−1, 1} a random variable.

Let Λ ⊂ H be a set of vectors and write

BΛ = sup
v∈Λ

‖v‖ and CΛ = sup
v∈Λ,ω∈Ω

|〈w (ω) , v〉| .
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Fix γ, δ ∈ (0, 1). Then with probability greater than 1 − δ in S = (ω1, ..., ωm)
drawn from μm we have for every v ∈ Λ and every t with |t| ≤ CΛ

Pr
ω∼μ

{y (ω) (〈w (ω) , v〉 − t) ≤ 0}

≤ 1
m

m∑
i=1

fγ (y (ωi) (〈w (ωi) , v〉 − t)) +
1√
m

(
2 (BΛ + CΛ)

γ
+

√
ln (1/δ)

2

)
.

The theorem as stated has an improved margin dependent term by a factor
of 2 over the results in [1]. This results from using a slightly different definition
of Rademacher complexity with a correspondingly improved bound on the com-
plexity of function classes obtained from compositions with Lipschitz functions
(Theorem A6 in [2]).

For a fixed Hilbert space H we now define a second Hilbert space consist-
ing of Hilbert-Schmidt operators. With HS we denote the real vector space of
symmetric operators on H satisfying

∑∞
i=1 ‖Tei‖2 ≤ ∞ for every orthonormal

basis (ei)
∞
i=1 of H . For S, T ∈ HS and an orthonormal basis (ei) the series∑

i 〈Sei, T ei〉 is absolutely summable and independent of the chosen basis. The
number 〈S, T 〉HS =

∑
〈Sei, T ei〉 defines an inner product on HS, making it into

a Hilbert space. We denote the corresponding norm with ‖.‖HS (see Reed and
Simon [12] for background on functional analysis).

We use HS+ to denote the set of positive Hilbert-Schmidt operators,

HS+ = {T ∈ HS : 〈Tv, v〉 ≥ 0 for all v ∈ H} .

Then HS+ is a closed convex cone in HS. Every T ∈ HS+ has a unique positive
squareroot, which is a bounded operator T 1/2 (in fact T 1/2 ∈ HS+) such that
T = T 1/2T 1/2.

For every v ∈ H we define an operator Qv by Qvw = 〈w, v〉 v. For v �= 0
chose an orthonormal basis (ei)

∞
1 , so that e1 = v/ ‖v‖. Then

‖Qv‖2
HS =

∑
i

‖Qvei‖2 = ‖Qvv‖2
/ ‖v‖2 = ‖v‖4

,

so Qv ∈ HS+ and ‖Qv‖HS = ‖v‖2. With the same basis we have for any T ∈ HS

〈T, Qv〉HS =
∑

i

〈Tei, Qvei〉 = 〈Tv, Qvv〉 / ‖v‖2 = 〈Tv, v〉 .

For T ∈ HS+ we then have

〈T, Qv〉HS =
∥∥∥T 1/2v

∥∥∥2
. (3)

The set of d-dimensional, orthogonal projections in H is denoted with Pd. We
have Pd ⊂ HS+ and if P ∈ Pd then ‖P‖HS =

√
d and P 1/2 = P .

Consider the feature map given by the operator T 1/2, where T is any operator
in HS+ (this corresponds to the metric d (., .)T considered in [16]). Its threshold
dependent risk is
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R
(
T 1/2, c, ρ

)
= Pr

(x,x′,r)∼ρ

{
r

(
c2 −

∥∥∥T 1/2 (x− x′)
∥∥∥2
)
≤ 0

}
= Pr

(x,x′,r)∼ρ

{
r
(
c2 − 〈T, Qx−x′〉HS

)
≤ 0

}
,

where we used the key formula (3). For a margin γ > 0 and a sample S =
((x1, x

′
1, r1) , ..., (xm, x′

m, rm)) we define the empirical margin-error

R̂γ

(
T 1/2, c, S

)
=

1
m

m∑
i=1

fγ

(
ri

(
c2 −

∥∥∥T 1/2 (xi − x′
i)
∥∥∥2
))

=
1
m

m∑
i=1

fγ

(
ri

(
c2 −

〈
T, Qxi−x′

i

〉
HS

))
.

It is clear that the definitions of R and R̂ coincide with those used in Theorem 1
when P is a finite dimensional orthogonal projection. These definitions are also
analogous to the risk and empirical margin errors for classifiers obtained by
thresholding bounded linear functionals as in Theorem 2. This leads to

Theorem 3. Let T be some class of positive symmetric linear operators on H
and denote2

‖T ‖HS = sup
T∈T

‖T ‖HS and ‖T ‖∞ = sup
T∈T

‖T ‖∞ .

Fix γ > 0. Then for every δ > 0 we have with probability greater than 1 − δ in
a sample S ∼ ρm, that for every T ∈ T and every c ∈

(
0, ‖T ‖1/2

∞

)

R
(
T 1/2, c, ρ

)
≤ R̂γ

(
T 1/2, c, S

)
+

1√
m

(
2 (‖T ‖HS + ‖T ‖∞)

γ
+

√
ln (1/δ)

2

)
.

Theorem 1 follows immediately from setting T = Pd, since ‖Pd‖HS =
√

d
and ‖Pd‖∞ = 1.

Proof. Note that for (x, x′, r) in the support of ρ we have ‖Qx−x′‖HS = ‖x− x′‖2

≤ 1, so we can apply Theorem 2 with Ω = X 2×{−1, 1}, μ = ρ, H = HS,
w (x, x′, r) = −Qx−x′, and y (x, x′, r) = r and Λ = T . Then BΛ = ‖T ‖HS and
CΛ ≤ ‖T ‖∞. Substitution of the expressions for R and R̂γ in the bound of
Theorem 2 gives Theorem 3. �

6 Hyperbolic PCA

Fix a margin γ and a training sample S = ((x1, x
′
1, r1) , ..., (xm, x′

m, rm)) of
equivalence constraints. Since there are no other sample dependent terms in the
bound of Theorem 1, we should in principle minimize the empirical margin-error

R̂γ (P, c, S) =
1
m

m∑
i=1

fγ

(
ri

(
c2 −

〈
P, Qxi−x′

i

〉
HS

))
.

2 Here ‖T‖∞ = sup‖v‖=1 ‖Tv‖ is the usual operator norm (see [12]).
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over all choices of c ∈ (0, 1) and P ∈ Pd, to obtain a (nearly) optimal projection
P ∗ together with some clustering granularity c∗.

This algorithm is difficult to implement in practice. One obstacle is the non-
linearity of the margin functions fγ . Replacing the fγ by the convex hinge-loss
does not help, because the set of d-dimensional projections itself fails to be con-
vex. Replacing the set Pd of candidate maps by the set of positive operators
with a uniform bound B on their Hilbert-Schmidt norms and replacing the fγ

by any convex function such as the hinge-loss results in a convex optimization
problem. Its solution would be the most direct way to exploit Theorem 3 (tak-
ing us outside the domain of subspace selection). A major difficulty here is the
positivity constraint on the operators chosen. It can be handled by a gradient-
descent/projection technique as in [16], but this is computationally expensive,
necessitating an eigen-decomposition at every projection step.

Here we take a different path, remaining in the domain of subspace selection.
Fix c ∈ (0, 1) and γ > 0 and for i ∈ {−1, 1} define numbers ηi by η−1 =

min
{

1
1−c2 , 1

γ

}
and η1 = −min

{
1
c2 , 1

γ

}
. Define the empirical operator T̂ (η, S)

by

T̂ (η, S) =
1
m

m∑
i=1

ηri
Qxi−x′

i
.

Then

R̂γ (P, c, S) ≤ 1
m

m∑
i=1

(
1 + ηri

(
c2 −

〈
Qxi−x′

i
, P

〉
HS

))

= 1 +
c2

m

m∑
i=1

ηri
−
〈
T̂ (η, S) , P

〉
HS

.

The right hand side above is the smallest functional dominating R̂γ and
affine in the Qxi−x′

i
. Minimizing it over P ∈ Pd is equivalent to maximizing〈

T̂ (η, S) , P
〉

HS
and constitutes the core step of our algorithm where it is used

to generate candidate pairs (P, c) to be tried in the bound of Theorem 1, leading
to a heuristic minimization of R̂γ (P, c, S) for different values of c ∈ (0, 1). Cur-
rent work seeks to replace this heuristic by a more systematic boosting scheme.

Maximization of
〈
T̂ (η, S) , P

〉
HS

is carried out by solving the eigenvalue

problem for T̂ and taking for P the projection onto the span of the d eigenvectors
corresponding to the largest eigenvalues of T̂ . This is similar to the situation for
PCA, where the empirical operator approximating the covariance operator is

Ĉ (S) =
1
m

m∑
i=1

Qxi

and the xi are the points of an unlabeled sample. The essential difference to
PCA is that while Ĉ is a positive operator, the operator T̂ is not, and it can
have negative eigenvalues. The infinite dimensionality of H and the finite rank of
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T̂ ensure that there is a sufficient supply of eigenvectors with nonnegative eigen-
values. Nevertheless, while the level sets of the quadratic form defined by Ĉ are
always ellipsoids, those of T̂ are hyperboloids in general, due to the contributions
of positive equivalence constraints. In a world of acronyms our algorithm should
therefore be called HPCA, for hyperbolic principal component analysis. If there
are only negative equivalence constraints our algorithm is essentially equivalent
to PCA.

To describe in more detail how the method works, we put the kernel map ψ
back into the formulation. The empirical operator then reads

T̂ (η, S) =
1
m

m∑
i=1

ηri
Qψ(xi)−ψ(x′

i).

Clearly an eigenvector w of T̂ must be in the span of the {ψ (xi)− ψ (x′
i)}

m
i=1,

so we can write

w =
m∑

i=1

αi (ψ (xi)− ψ (x′
i)) . (4)

Substitution in the equation T̂ (η, S)w = λw and taking inner product with(
ψ (xj)− ψ

(
x′

j

))
gives the generalized matrix-eigenvalue problem

ΓDΓα = λΓα

Γij =
〈
ψ (xi)− ψ (x′

i) , ψ (xj)− ψ
(
x′

j

)〉
Dij = ηri

δij .

Evidently all these quantities can be computed from the kernel matrix
〈ψ (xi) , ψ (xj)〉. The d solutions αk = (αi)k corresponding to the largest eigen-
values λ are substituted in (4), the resulting vectors wk are normalized and the
projection corresponding to largest eigenvalues is computed. Notice how this
algorithm resembles PCA if there are only negative equivalence constraints, be-
cause then D becomes the identity matrix.

There is an interesting variant of this method, which is useful in practice
even though it does not completely fit the probabilistic framework described
above. Suppose we are given an ordinary sample of labelled data
S = ((x1, y1) , ..., (xm, ym)) and we want to exploit all the equivalence con-
straints implied by S, that is to maximize

〈
T̂
(
η, S(2)

)
, P

〉
HS

with S(2) =

((xi, xj , r (yi, yj)))i�=j . One might be led to think that this would require solving
the eigenvalue problem of an m2×m2-matrix, which would be of order m6, mak-
ing it computationally impractical even for moderate sample sizes. The problem
may however be reduced to the eigenvalue problem of an m×m-matrix, thus of
order m3:

The empirical operator now reads (with rij = r (yi, yj))

T̂
(
η, S(2)

)
=

1
m2

m∑
i,j=1

ηrij
Qψ(xi)−ψ(xj).
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Substituting an eigenvector w =
∑m

1 γkψ (xk) in the eigenvalue-equation and
taking the inner product with some ψ (xl), and using the fact that the matrix
aij = ηrij

/m2 is symmetric we get

λ

m∑
k=1

γk 〈ψ (xk) , ψ (xl)〉

=
1

m2

m∑
i,j=1

ηrij

〈
Qψ(xi)−ψ(xj)w, ψ (xl)

〉

=
m∑

k=1

γk

m∑
i,j=1

aij 〈ψ (xk) , ψ (xi)− ψ (xj)〉 〈ψ (xi)− ψ (xj) , ψ (xl)〉

= 2
m∑

k=1

γk

m∑
ij=1

(
δij

m∑
n=1

ain − aij

)
〈ψ (xk) , ψ (xi)〉 〈ψ (xj) , ψ (xl)〉 .

Using G to denote the ordinary Gramian or kernel-matrix Gij = 〈ψ (xi) , ψ (xj)〉
we again obtain a generalized m×m eigenvalue problem

GAGγ = λGγ.

A is not diagonal in this case, but given by the symmetric matrix

Aij = 2

(
δij

m∑
n=1

ain − aij

)
=

2
m2

(
δij

m∑
n=1

ηrin
− ηrij

)
.

The sample S(2) does not fit into our probabilistic framework, because it has not
been generated by m2 independent draws of equivalence constraints, in fact only
O (m) of the pairs in S′ can be independent. We nevertheless used this variant
of the algorithm to exploit all the information in the training samples for the
experiments reported below. The worst possible effect of the use of S(2) is that
the number m2 of equivalence constraints must be replaced by m in our bounds.

7 Experiments

The experiments are designed to test the transfer capabilities of our subspace se-
lection algorithm: We use the data of one set of learning tasks to train a projection,
and then check how it facilitates the learning of a new and unknown task.

In practice we take a sample S from a single multiclass learning task with
alphabet Y (this could easily be extended to a collection of tasks) and employ
the algorithm described at the end of the previous section to generate projections
from all the equivalence constraints implied by S for different values η1and η−1,
selecting the projection P ∗ giving the smallest empirical risk R̂0.01

(
P ∗, S(2)

)
.

The optimal values are reported below for each experiment3. Here the balanced
version of the risk is used to eliminate the effects of alphabet-sizes.
3 Theorem 1 overestimates the estimation error. This is why a small value for γ is

chosen, even though this may make the bound of Theorem 1 trivial.
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The projection P ∗ is applied to a target task (with alphabet Y ′) for which a
test-sample S′ is available. The empirical distribution of S′ is used to estimate
the balanced risk R∗ of P ∗ in the new task (reported below for each case, together
with the optimal distance threshold c∗). In addition the feature map is tested
with nearest neighbour classification: From S′ a single example per class is chosen
as training data for a nearest neighbour classifier and the error rate of this
classifier is recorded for both the metric induced by the feature map (projected
data) and the original Euclidean metric on normalized pixel vectors (raw data).
This experiment is repeated over all possible choices of training data (in the
manner of a leave-(n− 1)-out test) and the resulting error rates are reported.

The pixel vectors were normalized to unit length. The raw data below already
refers to these unit vectors. The embedding ψ was realized by the RBF-kernel
κ (x, y) = 2−1 exp

(
−C |x− y|2

)
, with C = 16 for the handwritten digits and

C = 8 in all other cases 4. Note that the normalization of the kernel is chosen
to bound the diameter of the embedded input vectors by 1, as required by our
bounds.

We tried five learning environments, two realistic ones involving handwritten
characters and face recognition, and three slightly artificial ones defined by the
respective invariances of rotation, scaling and combined rotation and scaling.

For handwritten characters we used images of upper and lower case letters
in the NIST database to train P ∗, and a subset of the MNIST database of digits
for testing. For face recognition we used the images of 31 subjects in the AT&T
Face-Database for training and the remaining 9 subjects for testing.

For rotation invariant character recognition randomly rotated images of prin-
ted lower case letters were used for training, randomly rotated images of printed
digits (with ’9’ omitted) for testing. For scale invariant character recognition
randomly scaled (from 50% to 150%) images of printed capitals and lowercase
letters were used for training, randomly scaled images of printed digits for test-
ing. For combined rotation and scale invariant character recognition the images
in the rotation invariant dataset were also randomly scaled (from 50% to 150%).
Again the projection was trained from the letters and tested with digits. The
following table summarizes the results of these experiments:

The classification error on the projected data correlates well with the risk R∗

and the projection leads to a significant improvement in all cases, handwritten
character recognition being the most difficult environment. In the case of face
recognition the data set used to train the projection is rather small and further
improvements are to be expected for larger, perhaps more difficult data sets
than AT&T. In the cases, where the environment corresponds to a class of spe-
cific geometric invariances, the projection spectacularly reduces the classification
error by orders of magnitude.

It seems promising to extend these experiments to the recognition of spa-
tially rotated objects. A very interesting possible line of possible experiments
involves unsupervised learning through the observation of a continuous process.
4 Here and in the definition of the kernel |.| refers to the euclidean norm of the pixel

vectors.
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Table 1. Summary of experimental results

handw.
chars faces

rotated
chars

scaled
chars

rotated
+scaled
chars

|Y| (Training task) 52 31 20 44 20
|S| 4160 310 2000 1320 4000

|Y ′| (Testing task) 10 9 9 10 9
|S′| 500 90 900 300 1800

d =dim(P ∗) 24 20 18 24 18
η−1 (η1 = 1, balanced) 0.052 0.016 0.019 0.22 0.19

R∗ balanced 0.188 0.05 0.022 0.02 0.068
c∗ (balanced) 0.26 0.45 0.3 0.36 0.25

1-NNError on raw data 0.549 0.116 0.716 0.472 0.803
1-NNError on projected data 0.318 0.043 0.014 0.008 0.072

A pair consisting of the present observable vector and a recent memory would
be treated as a positive equivalence constraint, a pair of the current vector and a
distant memory a negative one. A correspondingly trained projection should map
temporal proximity to spatial proximity in its feature space. The observation of
continuously and quickly rotating objects which are occasionally being replaced
could then lead to a nearly rotation invariant preprocessor. Some experiments
pointing in a similar direction have been made by Bar-Hillel et al [3].
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Abstract. In feature selection, classification accuracy typically needs to be esti-
mated in order to guide the search towards the useful subsets. It has earlier been
shown [1] that such estimates should not be used directly to determine the op-
timal subset size, or the benefits due to choosing the optimal set. The reason is
a phenomenon called overfitting, thanks to which these estimates tend to be bi-
ased. Previously, an outer loop of cross-validation has been suggested for fighting
this problem. However, this paper points out that a straightforward implementa-
tion of such an approach still gives biased estimates for the increase in accuracy
that could be obtained by selecting the best-performing subset. In addition, two
methods are suggested that are able to circumvent this problem and give virtually
unbiased results without adding almost any computational overhead.

1 Introduction

Feature selection is the art of choosing a small yet descriptive subset of useful features
from amongst a larger set of candidate features. There may be many reasons for do-
ing this: one might, for example, wish to gain a deeper understanding of the prediction
problem at hand, or simply to avoid the potentially costly measurement of all the fea-
tures. Whatever the aim, it makes sense to assume that one should be able to identify
the optimal feature subset size. Moreover, it is often desirable to have the possibility to
estimate the increase in accuracy due to choosing an optimally sized subset instead of
using all the candidate features.

2 Background

This section briefly describes some basic components required in a feature selection
process: the classifier architecture, the evaluation mechanism for a single subset, and
the search strategy for finding the useful subsets.

2.1 Classification

A plethora of approaches have been suggested for building automatic feature-based
classifiers [see, e.g., 2]. In the context of this paper, the choice of the classifier architec-
ture should be largely irrelevant. However, to verify the generality of the results, they
are computed using two very different methods: the 1 nearest neighbor (1NN) classifi-
cation rule [see, e.g., 3], which is quite popular in feature selection literature, and the
C4.5 decision tree building algorithm [4].

C. Saunders et al. (Eds.): SLSFS 2005, LNCS 3940, pp. 198–208, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2.2 Cross-Validation

In order to guide the search for the optimal subset, a mechanism for determining the
potential performance of a single subset is needed. This paper positions itself in the
context of the wrapper approach [5, 6], where the subsets are evaluated using actual
classifiers. A common choice is cross-validation (CV) [7], where the data available is
first split into a number of folds. Then, one fold at a time is designated as the validation
set, while the others are used for training. The validation set is classified using the
classifier that is trained with the corresponding training set. When the errors for the
different validation sets are counted up, an estimate for the classification performance
using a specific subset is obtained.

The special case when the number of folds is equal to the number samples is usually
called “leave-one-out cross-validation” (LOOCV).

Often, it is beneficial to retain the proportions of the different classes between all the
folds. If this is enforced, the CV process is called stratified. As stratification is known
to improve the accuracy of cross-validation [8], it is done in all the experiments of this
paper.

2.3 Search Algorithms

Out of the myriad of algorithms suggested for the order in which the feature subsets
should be evaluated, this paper experiments with two: Sequential Forward Selection, or
SFS [9], and Sequential Floating Forward Selection, SFFS [10]. Both start the search
with an empty subset, and, during one iteration, consider the insertion of each feature
that still remains excluded. Out of these, the one whose addition results in the largest
increase (or smallest decrease) in estimated performance is added to the current set. The
difference between the algorithms is that SFFS allows backtracking during the search:
after adding a feature, each feature currently selected is subjected to removal. The can-
didate most promising for deletion is pruned, if doing so yields a better performing
subset of the corresponding size than was found previously.1 In the experiments of this
paper, the search is carried on until all the candidate features have been included. This
way, the algorithms are able to propose a subset for each possible subset size.

2.4 Interpretation of the Results

Once the search algorithm together with the subset evaluation method has suggested
several subsets of different sizes, the practitioner obviously wants to know how these
subsets compare to each other: which subset size is the optimal one, and how much bet-
ter is the optimal subset of that size compared to the full set containing all the candidate
features? Answering these two questions is the essence of this paper.

3 The Problem

During the search process, the subset evaluation method, such as cross-validation, pro-
duces estimates that are used primarily to guide the search. However, these intermediate

1 The bug fix pointed out by Somol et al. [11] is utilized in this paper.
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Fig. 1. Observed classification accuracies for the subsets of different sizes found by running a
feature selection algorithm, as estimated with LOOCV during the search (solid line) and calcu-
lated for independent test data not seen during the search (dashed line). The data is from a single
run of the experiments summarized in Table 2.

results can also be stored for later use. Once the search has finished, one could then use
the same numbers to compare to each other the subsets of different sizes. An example
curve drawn based on such values is shown in Fig. 1 (the solid line).

Unfortunately, when a number of such scores due to cross-validation are compared
to each other to facilitate the identification of the best one, the estimate for the winner
of the comparison is no more an unbiased estimate for the accuracy of the winner. This
perhaps counterintuitive fact has been shown many times; from a pedagogical point of
view, one of the most successful explanations was given by Jensen and Cohen [12].

In the context of an algorithm like SFS or SFFS, the winner subset for each size
has been picked using the cross-validation values required to guide the search. This
selection process renders the CV estimate for the winner of each cardinality largely
useless for any later comparisons [1]. As a matter of fact, the accuracy obtained for new
data tends to behave rather differently, as is shown by the dashed line of Fig. 1.

4 Existing Solutions

This section describes two methods representative of the current state of the art in de-
termining the optimal subset size, and the performance of the best subset of that size.

4.1 Independent Test Set

It is straightforward to use an independent test set to evaluate the performances of the
newly found subsets, if such a set happens to be available. On the other hand, if one has
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access to more data, then one usually wants to append it to the previous dataset, in order
to maximally benefit from it. In Sect. 6 of this paper, independent test sets are used to
provide the ground truth, using which the approaches being tested can be compared.

4.2 Outer Loop of Cross-Validation

It has been mentioned before that an outer loop of cross-validation could be used to
determine the performance of the different subsets, and hence to facilitate the choice
of the optimal feature subset [1]. For example, this is what could happen: Using an
outer CV loop, a researcher obtains the properly cross-validated estimates for the per-
formance of each subset size. Then, the researcher compares the largest of these values
to the estimated performance of the full set, and finds an increase of several percentage
points in classification accuracy. This approach is detailed in Algorithm 1.

However, with dozens of candidate features, this method leads to overfitting on yet
another level. This is because — once again — the researcher is first determining the
maximum of a number of estimates, and then using that estimate.

The estimated performance for the best subset of size i found during iteration k can
be thought of as a random variable X

(k)
i , realizations of which are denoted by x

(k)
i in

Algorithm 1. The random variable representing the estimate for the performance of the
optimal subset (of the optimal size) is

X̂ = max
i

(X̄i) = max
i

(
1
K

K∑
k=1

X
(k)
i ).

1. Choose a feature selection algorithm, such as SFS or SFFS.
2. Divide all the data available into K folds.
3. for k := 1 to K, (The evaluation loop.)
3.1 Create a (training) set T (−k), which includes the samples of all the

folds, except those in the kth.
3.2 Using T (−k), perform a single run of the feature selection algorithm.

An inner loop of cross-validation may divide T (−k) further.
3.3 Train classifiers using T (−k) and the obtained subsets of different sizes.
3.4 Test these classifiers using the samples in the kth fold, and record the

performance. In the text, these estimates are referred to as x
(k)
i ,

i = 1, 2, . . . , D, where D is the total number of candidate variables.
end;

4. For each subset size, determine the average of the K estimates obtained in
step 3.4: x̄i = 1

K
K
k=1 x

(k)
i .

5. Out of all the subset sizes, find the one which maximizes the average score:
d̂ = arg maxi(x̄i). This is the estimate for the optimal subset size.

6. The corresponding mean value, x̂ = maxi(x̄i), is the estimate for the
maximum performance that can be attained.

7. Perform a single run of the feature selection algorithm having all the data
available.

8. Choose the winner amongst the subsets having the size defined in step 5.

Algorithm 1. Determining the optimal subset size and the corresponding performance
using an outer loop of cross-validation
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A lengthy proof given by Jensen and Cohen [12, pp. 318–320] can be used almost
as such to show that if every X̄i is an unbiased estimate for the corresponding true
performance ψi of a classifier built using the selected feature subset of size i, and there
exists no subset size that is the optimal one in all the possible outcomes of the algorithm,
then X̂ = maxi(X̄i) is a positively biased estimator of any ψi. This, in turn, makes it a
positively biased estimator of the performance attainable with the best optimally sized
feature subset.

5 Cross-Indexing

To obtain a truly unbiased estimate, one shall not use any such (probabilistic) value that
was previously used to pick a certain model, or subset, from a large set of candidates.
This principle is reflected in the two algorithms — called cross-indexing A and B —
that this paper suggests for estimating the performance of the optimal feature subset.

Let us first discuss approach A, delineated in Algorithm 2. In step 4.1, averaged
estimates for each subset size are computed much like in Algorithm 1 (step 4) but sep-
arately for each fold k, always ignoring the results obtained during the kth iteration of
the evaluation loop. These estimates are then used in step 4.2 to determine the optimal
subset size d̂(−k). The corresponding performance estimate is obtained by recalling the
performance estimated during iteration k of the evaluation loop for the subset having
size d̂(−k) (step 4.3). In the end, the results for the k iterations are averaged to pro-
duce the final estimates (steps 5 and 6). Next, it is shown that the positive bias of this
approach, if any, is bounded by that of outer-loop CV.

1–3. Perform steps 1–3 of Algorithm 1, including the substeps.
4. for k := 1 to K, (The indexing loop.)
4.1 For each subset size, take the average of the K − 1 estimates obtained

for the other folds: x̄
(−k)
i = 1

K−1
k−1
j=1 x

(j)
i + K

j=k+1 x
(j)
i .

4.2 Find the subset size using which maximum performance is attained:

d̂(−k) = arg maxi x̄
(−k)
i .

4.3 Record the performance for the best subset of size d̂(−k) that was
obtained during the kth iteration: x

(k)
d̂(−k) .

4.4 For comparison purposes, you can also record the performance for the
full feature set on the kth iteration: x

(k)
D .

end;
5. Average all the K subset sizes obtained during the different executions of

step 4.2. This average is the estimate for the optimal subset size.
6. Average all the K performance estimates obtained in step 4.3. This average

is the estimate for the performance of the best subset having the size
discovered during step 5.

7–8. Perform steps 7–8 of Algorithm 1.

Algorithm 2. The cross-indexing A algorithm. Median or other statistical descriptors
could also be used instead of the average in steps 4.1, 5 and 6, if applicable.
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Proposition 1. The estimate x̂A provided by Algorithm 2 is not more optimistic than
the x̂ obtained using Algorithm 1.

Proof. The estimates provided by Algorithms 1 and 2 can be written as follows:

x̂ = max
i

(
1
K

K∑
k=1

x
(k)
i

)
=

1
K

K∑
k=1

x
(k)
d̂

, where

d̂ = arg max
i

(
1
K

K∑
�=1

x
(�)
i

)
= argmax

i

(∑
�

x
(�)
i

)
, and

x̂A =
1
K

K∑
k=1

x
(k)
d̂(−k) , where

d̂(−k) = arg max
i

(
1

K − 1

(
k−1∑
�=1

x
(�)
i +

K∑
�=k+1

x
(�)
i

))
= argmax

i

⎛
⎝∑

� �=k

x
(�)
i

⎞
⎠ .

Thus, it suffices to compare x
(k)
d̂

and x
(k)
d̂(−k) . By definitions of d̂ and d̂(−k):∑

�

x
(�)
d̂
≥
∑

�

x
(�)
d̂(−k) and

∑
� �=k

x
(�)
d̂(−k) ≥

∑
� �=k

x
(�)
d̂

.

Consequently,

x
(k)
d̂

=
∑

� x
(�)
d̂
−
∑

� �=k x
(�)
d̂
≥
∑

� x
(�)
d̂(−k) −

∑
� �=k x

(�)
d̂(−k) = x

(k)
d̂(−k) . ��

It can be observed that if d̂(−k) = d̂ for all k, then the estimates provided are equal.

1–3. Perform steps 1–3 of Algorithm 1, including the substeps.
4. for k := 1 to K, (The indexing loop.)
4.1 Pick the subset size using which maximum performance was obtained

on the kth execution of step 3.4: d̂(k) = arg maxi x
(k)
i .

4.2 Record the performance for this very subset size on all the other
iterations except the kth.

4.3 Compute the average of the K − 1 estimates obtained in step 4.2:

x̃
(−k)
d̂(k) = 1

K−1
k−1
�=1 x

(�)
d̂(k) + K

�=k+1 x
(�)
d̂(k) .

4.4 For comparison purposes, you can also record the performance for the
full set on all the other K − 1 iterations.

end;
5. Average all the K subset sizes obtained during the different executions of

step 4.1. This average is the estimate for the optimal subset size.
6. Average all the K performance estimates obtained in step 4.3. This average

is the estimate for the performance of the best subset having the size
discovered during step 5.

7–8. Perform steps 7–8 of Algorithm 1.

Algorithm 3. The cross-indexing B algorithm. Again, the statistical measure computed
in steps 4.3, 5 and 6 need not be the average.
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On the other hand, in cross-indexing B outlined in Algorithm 3, the estimate number
k for the optimal subset size, d̂(k), is determined in step 4.1 using the estimates obtained
during the kth iteration of the evaluation loop. This estimate is then used to look up the
performances for the same subset size, but for the other iterations (step 4.3).

The cross-indexing algorithms described produce only a single value for both the
optimal subset size and the corresponding performance. However, those estimates that
undergo averaging in steps 5 and 6 of Algorithms 2 and 3 could also be used to de-
termine some kind of confidence intervals, or to assess the stability of the solution.
Unfortunately, such attempts are outside the scope of this paper.

6 Experiments

This section compares the following four methods for determining the optimal subset
size and for assessing the performance of the best subset having that size:

0. No outer loop of cross-validation at all,
1. Outer-loop CV (Algorithm 1),
2. Cross-indexing A (Algorithm 2), and
3. Cross-indexing B (Algorithm 3).

For each dataset, the optimal subset size is determined with every method. Also, the
increase in accuracy that can be obtained when the optimal subset of that size is chosen,
instead of the full set, is estimated. Then, a classifier is trained using the said optimal
subset, and that classifier is used to classify the held-out test data. Doing the same
with the full feature set and subtracting gives us the ground-truth improvement due to
selecting features. This value can then be compared to the improvement predicted by
the estimation approach.

The cardinality of the optimal subset as determined using method i is denoted with
d̂i, and this value when divided by the total number of candidate features (D) and
multiplied by 100% is signified by ηi. The estimated benefit due to choosing d̂i features,
i.e., the difference between the estimated accuracies using the optimal subset and the
full set, is signified by δ

(e)
i . On the other hand, the same difference when measured

utilizing the held-out test set is denoted using δ
(t)
i . To determine the bias of the different

approaches, we need to determine the difference between these two differences: Δi =
δ
(e)
i − δ

(t)
i .

The smaller the absolute value of Δi, the smaller the bias in determining the benefits
due to choosing the optimal subset found using the corresponding estimation method.
Thus, from the viewpoint of this paper, the best method is signified by the smallest
value of |Δi|.

To estimate the standard deviations of the said key figures, every experiment is
repeated 30 times with a different seed for the random number generator.

In the context of the 1NN classifier, the type of the inner cross-validation loop is
varied: namely, LOOCV and 5-fold CV are used. However, LOOCV gets computation-
ally too expensive with the C4.5 induction algorithm: therefore, such experiments are
not done. The outer CV or cross-indexing loop always uses 5 folds.
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6.1 Datasets

The datasets used in the experiments are summarized in Table 1. Each of them is pub-
licly available at the UCI Machine Learning Repository.2

Table 1. The datasets used in the experiments. The number of features in the set is denoted by
D. One f th of the samples are used during the search (see text). The classwise distribution of the
samples in the original set is shown in the next column, and the number of training samples used
(roughly the total number of samples divided by f ) is given in the last column, denoted by m.

dataset D f samples m

dermatology 33 2 20–112 (total 366) 184
ionosphere 34 2 126 and 225 176
mushroom 112 10 3916 and 4208 813
sonar 60 2 97 and 111 105
spectf 44 2 95 and 254 175
waveform 40 5 1653–1692 (total 5000) 1000
wdbc 29 2 212 and 357 284
wpbc 32 2 47 and 151 99

The mushroom dataset in the repository has 21 categorical features for which no
value is missing. In the experiments of this paper, 112 binary features are generated
from them using 1-of-N coding: a categorical feature having N possible values will
generate N binary features, such that the jth of these is assigned the value 1 if the
sample, according to this feature, belongs to the jth category, and 0 otherwise. The
mushroom set is chosen because it has previously expressed interesting behavior in
the context of feature selection [13].

Before doing anything, each dataset is divided into the set to be used during the
search, and the held-out independent test set. It is this division and all the subsequent
steps that are — for each combination being tested — repeated for 30 times. The split is
controlled using the parameter f (see Table 1): the dataset is first divided into f subsets,
of which one is chosen as the set to be used during the search while the other f − 1
subsets constitute the hold-out set. Note that this is not related to any of the different
levels of cross-validation: the purpose of the parameter f is just to make sure that the
training sets do not get prohibitively large in those cases where the dataset happens to
have a lot of samples. CV is then done during the search — potentially in two nested
loops — in order to be able to guide the selection towards the useful feature subsets,
and to estimate their benefits.

6.2 Results

For clarity, the figures introduced in the beginning of this section (d̂i, ηi, δ
(e)
i , δ

(t)
i and

Δi) are first shown in Table 2 for a single dataset using the 1NN classifier and the
SFS search algorithm. Then, more results are lined up: Table 3 contains the essential

2 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Table 2. Results obtained for the ionosphere dataset using the 1NN classifier and the SFS
algorithm. The different values of i refer to the different approaches: no outer loop of CV at all
(i = 0), outer-loop CV as in Algorithm 1 (i = 1), cross-indexing A (i = 2), and cross-indexing
B (i = 3). Smaller (absolute) value of Δi = δ

(e)
i − δ

(t)
i implies less observed bias, and thus a

better method. The ‘±’ signifies a single standard deviation.

inner CV i d̂i ηi (%) δ
(e)
i δ

(t)
i Δi

LOO 0 6 ± 4 19 ± 13 14 ± 3 2 ± 3 12 ± 4
1 9 ± 5 25 ± 15 5 ± 2 2 ± 2 3 ± 3
2 9 ± 5 25 ± 13 2 ± 3 2 ± 3 −1 ± 4
3 8 ± 3 23 ± 9 2 ± 3 2 ± 3 −0 ± 4

5-fold 0 7 ± 4 21 ± 11 11 ± 3 2 ± 3 9 ± 3
1 13 ± 9 39 ± 26 5 ± 3 1 ± 3 4 ± 4
2 11 ± 6 32 ± 16 2 ± 4 1 ± 3 0 ± 5
3 9 ± 4 26 ± 12 1 ± 3 2 ± 3 −0 ± 4

Table 3. Results like those in Table 2 but for all the datasets, as obtained using the SFS algo-
rithm and the 1NN classifier architecture. Again, a smaller absolute value of Δi suggests that the
estimation method is less biased, thus better.

dataset inner CV η0 η1 η2 η3 Δ0 Δ1 Δ2 Δ3
dermatology LOO 52 ± 26 68 ± 24 68 ± 21 49 ± 15 4 ± 2 2 ± 2 0 ± 3 −0 ± 3

5-fold 53 ± 16 69 ± 22 73 ± 16 48 ± 11 4 ± 2 2 ± 2 1 ± 2 0 ± 3
ionosphere LOO 19 ± 13 25 ± 15 25 ± 13 23 ± 9 12 ± 4 3 ± 3 −1 ± 4 −0 ± 4

5-fold 21 ± 11 39 ± 26 32 ± 16 26 ± 12 9 ± 3 4 ± 4 0 ± 5 −0 ± 4
mushroom LOO 26 ± 20 69 ± 26 76 ± 21 30 ± 11 1 ± 1 0 ± 0 −0 ± 0 −1 ± 2

5-fold 13 ± 8 60 ± 24 57 ± 24 18 ± 8 1 ± 2 0 ± 0 −0 ± 0 −2 ± 4
sonar LOO 50 ± 18 66 ± 17 65 ± 16 53 ± 10 17 ± 7 5 ± 5 0 ± 6 −2 ± 7

5-fold 38 ± 16 61 ± 18 61 ± 12 46 ± 10 18 ± 6 4 ± 6 −2 ± 7 −2 ± 7
spectf LOO 32 ± 14 33 ± 23 37 ± 21 31 ± 12 18 ± 5 7 ± 6 3 ± 8 2 ± 6

5-fold 30 ± 19 36 ± 27 35 ± 20 32 ± 13 16 ± 3 8 ± 4 3 ± 6 2 ± 5
waveform LOO 52 ± 13 63 ± 17 63 ± 14 56 ± 9 6 ± 1 2 ± 2 1 ± 2 −0 ± 2

5-fold 46 ± 11 58 ± 17 60 ± 14 53 ± 11 5 ± 2 2 ± 2 1 ± 2 0 ± 2
wdbc LOO 35 ± 27 75 ± 28 78 ± 19 60 ± 15 4 ± 3 1 ± 2 0 ± 3 −0 ± 3

5-fold 44 ± 21 68 ± 26 67 ± 20 49 ± 15 5 ± 2 2 ± 3 0 ± 4 −0 ± 3
wpbc LOO 37 ± 30 77 ± 29 76 ± 22 56 ± 17 17 ± 11 6 ± 8 2 ± 10 0 ± 9

5-fold 27 ± 20 66 ± 32 62 ± 25 48 ± 13 19 ± 10 7 ± 9 2 ± 9 1 ± 9

information of Table 2, but for all the datasets. For brevity, only ηi and Δi are now
shown. Tables 4 and 5 report the results for the combinations C4.5/SFS and 1NN/SFFS,
respectively.

6.3 Discussion

Table 2 shows us directly that for the ionosphere dataset, the estimates provided by
method 0 — no outer loop of cross-validation at all — have a significant amount of
optimistic bias, which is not a new result [1]. As expected, the straightforward outer-
loop CV (approach 1) clearly lessens the problem, but does not nullify it. On the other
hand, it seems that both cross-indexing methods are able to make the bias effectively
vanish.
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Based on Table 3, it can be readily observed that also for the other datasets, the
bias incurred by cross-indexing (Δ2 or Δ3) is much smaller than that caused by the
other approaches (Δ0 and Δ1). This difference really does make a difference when we
want to estimate the degree of improvement (in the accuracy of a classifier) that can be
attained by running a feature selection algorithm.

The mushroom dataset deserves some special attention. While the outer-loop CV
and cross-indexing A are basically able to report perfectly unbiased accuracy results
for it, those methods fail to identify the fact that virtually error-free results can be
obtained with much less than half the number of features. Although the results due
to cross-indexing B are slightly biased to the negative direction, it is able to report a
much smaller optimal feature subset size, which already separates the classes extremely
well.

In general, it can be observed that the estimates given for the size of the optimal
subset are surprisingly close to each other for the outer-loop CV (method 1) and cross-
indexing A (method 2) — it is just that the cross-indexing approach gives a less bi-
ased estimate for the performance. On the other hand, it appears that cross-indexing
B (method 3) can identify equally performing subsets that, on the average, tend to be
somewhat smaller.

Finally, Tables 4 and 5 reveal that the observations made are not too dependent on
a particular choice of classifier architecture or subset selection strategy.

Table 4. Results calculated using the SFS strategy together with the C4.5 classifier

dataset inner CV η0 η1 η2 η3 Δ0 Δ1 Δ2 Δ3
dermatology 5-fold 42 ± 19 66 ± 25 61 ± 22 37 ± 13 4 ± 3 2 ± 2 1 ± 2 −0 ± 3
ionosphere 5-fold 34 ± 21 62 ± 33 56 ± 28 34 ± 14 6 ± 3 2 ± 2 −1 ± 3 −1 ± 3
mushroom 5-fold 20 ± 14 40 ± 25 38 ± 23 18 ± 10 1 ± 0 0 ± 0 0 ± 0 −0 ± 0
sonar 5-fold 24 ± 15 29 ± 25 35 ± 20 27 ± 12 17 ± 8 6 ± 6 0 ± 9 0 ± 8
spectf 5-fold 35 ± 21 61 ± 32 57 ± 25 42 ± 14 13 ± 6 4 ± 5 −0 ± 4 −1 ± 5
waveform 5-fold 36 ± 17 52 ± 25 52 ± 19 41 ± 12 5 ± 2 2 ± 2 −0 ± 2 −0 ± 2
wdbc 5-fold 30 ± 17 44 ± 30 44 ± 26 27 ± 13 4 ± 3 2 ± 2 0 ± 2 −0 ± 2
wpbc 5-fold 42 ± 23 21 ± 21 22 ± 19 23 ± 13 9 ± 8 2 ± 7 0 ± 7 1 ± 8

Table 5. Results for the SFFS algorithm and the 1NN classifier

dataset inner CV η0 η1 η2 η3 Δ0 Δ1 Δ2 Δ3
dermatology LOO 34 ± 10 77 ± 25 72 ± 20 50 ± 11 6 ± 3 2 ± 2 1 ± 3 1 ± 3

5-fold 51 ± 20 74 ± 22 72 ± 18 48 ± 10 5 ± 4 2 ± 3 1 ± 3 −0 ± 3
ionosphere LOO 23 ± 11 26 ± 20 28 ± 18 23 ± 8 13 ± 5 3 ± 4 −1 ± 5 −1 ± 5

5-fold 21 ± 9 36 ± 25 34 ± 18 28 ± 12 9 ± 4 3 ± 3 −1 ± 4 −0 ± 3
mushroom LOO 7 ± 2 77 ± 27 67 ± 24 20 ± 9 4 ± 12 0 ± 0 −0 ± 0 −1 ± 1

5-fold 9 ± 6 60 ± 26 55 ± 23 20 ± 10 2 ± 7 0 ± 0 −0 ± 0 −2 ± 6
sonar LOO 26 ± 7 62 ± 26 65 ± 19 47 ± 15 21 ± 8 7 ± 7 2 ± 7 −0 ± 7

5-fold 39 ± 15 63 ± 21 59 ± 15 43 ± 10 20 ± 7 6 ± 6 −0 ± 6 −1 ± 5
spectf LOO 42 ± 13 43 ± 31 41 ± 25 33 ± 13 20 ± 6 7 ± 7 −0 ± 7 −0 ± 5

5-fold 34 ± 18 33 ± 26 36 ± 19 33 ± 12 16 ± 4 6 ± 5 1 ± 5 1 ± 5
waveform LOO 49 ± 9 55 ± 20 53 ± 13 50 ± 10 7 ± 2 2 ± 2 0 ± 2 0 ± 2

5-fold 49 ± 14 58 ± 17 58 ± 15 52 ± 9 6 ± 2 2 ± 2 0 ± 2 −1 ± 2
wdbc LOO 18 ± 7 75 ± 26 70 ± 21 47 ± 15 4 ± 3 1 ± 2 0 ± 2 −1 ± 2

5-fold 54 ± 20 73 ± 23 71 ± 17 46 ± 13 4 ± 3 1 ± 2 −1 ± 3 −1 ± 3
wpbc LOO 13 ± 6 64 ± 38 64 ± 31 50 ± 18 20 ± 9 7 ± 6 2 ± 7 1 ± 7

5-fold 37 ± 22 61 ± 31 57 ± 22 43 ± 14 21 ± 9 9 ± 8 2 ± 8 3 ± 8
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7 Summary

In feature selection, a practitioner typically needs to know the optimal feature subset
size for a given dataset, and how much choosing the optimal subset of that size increases
the performance.

Traditionally, cross-validation is used to give minimally biased results while using
the data available as effectively as possible. However, when cross-validation is done in
evaluating and comparing the models, an outer loop of cross-validation is needed for
assessing the winner model. Indeed, an outer loop has been suggested for measuring
the benefits due to feature selection.

In this paper, it is shown that a simple implementation of an outer cross-validation
loop still gives biased estimates for the accuracy of the optimal subset as compared
to the full set comprised of all the features. To tackle this problem, a new approach
called “cross-indexing” is introduced in the form of two algorithms. They require prac-
tically no extra computation, nevertheless are able to give superior, virtually unbiased
estimates.
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[11] P. Somol, P. Pudil, J. Novovičová, and P. Paclı́k. Adaptive floating search methods
in feature selection. Pattern Recognition Letters, 20(11–13):1157–1163, 1999.

[12] D. D. Jensen and P. R. Cohen. Multiple comparisons in induction algorithms.
Machine Learning, 38(3):309–338, 2000.

[13] J. Reunanen. Overfitting in making comparisons between variable selection
methods. Journal of Machine Learning Research, 3:1371–1382, 2003.



Author Index

Agakov, Felix 103
Auer, Peter 163

Barber, David 103
Blum, Avrim 52
Bouveyron, Charles 139
Buntine, Wray 1

Gatica-Perez, Daniel 115
Gilad-Bachrach, Ran 127
Girard, Stéphane 139
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